Created
          June 15, 2022 09:25 
        
      - 
      
 - 
        
Save Pangoraw/c5468d15b640063376010edb49ce731e to your computer and use it in GitHub Desktop.  
    Online Cohen Kappa coefficient
  
        
  
    
      This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
      Learn more about bidirectional Unicode characters
    
  
  
    
  | from typing import Dict, Tuple | |
| import torch | |
| from torch import Tensor | |
| class OnlineKappa: | |
| """ | |
| Computes an online version of the Cohen's Kappa Coefficient. | |
| >>> k = OnlineKappa(n_classes = 2) | |
| >>> k.update(torch.tensor([1, 0, 0]), torch.tensor([1, 1, 0])) | |
| 3 | |
| >>> k.value() | |
| 0.39999999999999997 | |
| """ | |
| def __init__(self, n_classes: int) -> None: | |
| self.n_classes = n_classes | |
| self.n_observations: int = 0 | |
| self.n_agreed: int = 0 | |
| self.data: Dict[int, Tuple[int, int]] = { | |
| cls: (0, 0) for cls in range(n_classes) | |
| } | |
| def update(self, y1: Tensor, y2: Tensor) -> int: | |
| assert y1.shape == y2.shape | |
| assert torch.all(y1 >= 0) and torch.all(y1 < self.n_classes) | |
| assert torch.all(y2 >= 0) and torch.all(y2 < self.n_classes) | |
| self.n_observations += y1.numel() | |
| for cls in range(self.n_classes): | |
| c1, c2 = self.data[cls] | |
| self.data[cls] = ( | |
| int(c1 + (y1 == cls).sum().item()), | |
| int(c2 + (y2 == cls).sum().item()), | |
| ) | |
| self.n_agreed += int((y1 == y2).sum()) | |
| return self.n_observations | |
| def value(self) -> float: | |
| po = self.n_agreed / self.n_observations | |
| pe = sum([a * b for a, b in self.data.values()]) / (self.n_observations ** 2) | |
| return (po - pe) / (1 - pe) | 
  
    Sign up for free
    to join this conversation on GitHub.
    Already have an account?
    Sign in to comment