-
-
Save Paranormaly/5be7abcc2dfa777dc672bfc48f5c2194 to your computer and use it in GitHub Desktop.
Example of object detection with DL4J on images of red blood cells
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
package org.deeplearning4j.examples.convolution.objectdetection; | |
import java.io.File; | |
import java.net.URI; | |
import java.net.URISyntaxException; | |
import java.util.ArrayList; | |
import java.util.List; | |
import java.util.Random; | |
import org.bytedeco.javacv.CanvasFrame; | |
import org.bytedeco.javacv.OpenCVFrameConverter; | |
import org.datavec.api.io.filters.RandomPathFilter; | |
import org.datavec.api.records.metadata.RecordMetaDataImageURI; | |
import org.datavec.api.split.InputSplit; | |
import org.datavec.api.split.FileSplit; | |
import org.datavec.image.loader.NativeImageLoader; | |
import org.datavec.image.recordreader.objdetect.ObjectDetectionRecordReader; | |
import org.datavec.image.recordreader.objdetect.impl.VocLabelProvider; | |
import org.deeplearning4j.datasets.datavec.RecordReaderDataSetIterator; | |
import org.deeplearning4j.nn.api.OptimizationAlgorithm; | |
import org.deeplearning4j.nn.conf.ConvolutionMode; | |
import org.deeplearning4j.nn.conf.GradientNormalization; | |
import org.deeplearning4j.nn.conf.WorkspaceMode; | |
import org.deeplearning4j.nn.conf.inputs.InputType; | |
import org.deeplearning4j.nn.conf.layers.ConvolutionLayer; | |
import org.deeplearning4j.nn.conf.layers.objdetect.Yolo2OutputLayer; | |
import org.deeplearning4j.nn.graph.ComputationGraph; | |
import org.deeplearning4j.nn.layers.objdetect.DetectedObject; | |
import org.deeplearning4j.nn.transferlearning.FineTuneConfiguration; | |
import org.deeplearning4j.nn.transferlearning.TransferLearning; | |
import org.deeplearning4j.nn.weights.WeightInit; | |
import org.deeplearning4j.optimize.listeners.ScoreIterationListener; | |
import org.deeplearning4j.util.ModelSerializer; | |
import org.deeplearning4j.zoo.model.TinyYOLO; | |
import org.nd4j.linalg.activations.Activation; | |
import org.nd4j.linalg.api.ndarray.INDArray; | |
import org.nd4j.linalg.dataset.api.preprocessor.ImagePreProcessingScaler; | |
import org.nd4j.linalg.factory.Nd4j; | |
import org.nd4j.linalg.learning.config.Adam; | |
import org.nd4j.linalg.learning.config.Nesterovs; | |
import org.slf4j.Logger; | |
import org.slf4j.LoggerFactory; | |
import static org.bytedeco.javacpp.opencv_core.*; | |
import static org.bytedeco.javacpp.opencv_imgproc.*; | |
/** | |
* Example transfer learning from a Tiny YOLO model pretrained on ImageNet and Pascal VOC | |
* to perform object detection with bounding boxes on images of red blood cells. | |
* <p> | |
* References: <br> | |
* - YOLO: Real-Time Object Detection: https://pjreddie.com/darknet/yolo/ <br> | |
* - Images of red blood cells: https://github.com/cosmicad/dataset <br> | |
* <p> | |
* Please note, cuDNN should be used to obtain reasonable performance: https://deeplearning4j.org/cudnn | |
* | |
* @author saudet | |
*/ | |
public class RedBloodCellDetection { | |
private static final Logger log = LoggerFactory.getLogger(RedBloodCellDetection.class); | |
public static void main(String[] args) throws java.lang.Exception { | |
// parameters matching the pretrained TinyYOLO model | |
int width = 416; | |
int height = 416; | |
int nChannels = 3; | |
int gridWidth = 13; | |
int gridHeight = 13; | |
// number classes for the red blood cells (RBC) | |
int nClasses = 1; | |
// parameters for the Yolo2OutputLayer | |
int nBoxes = 5; | |
double lambdaNoObj = 0.5; | |
double lambdaCoord = 5.0; | |
double[][] priorBoxes = {{2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}}; | |
double detectionThreshold = 0.3; | |
// parameters for the training phase | |
int batchSize = 10; | |
int nEpochs = 50; | |
double learningRate = 1e-3; | |
double lrMomentum = 0.9; | |
int seed = 123; | |
Random rng = new Random(seed); | |
String dataDir = "/path/to/cosmicad/dataset/"; | |
File imageDir = new File(dataDir, "JPEGImages"); | |
log.info("Load data..."); | |
RandomPathFilter pathFilter = new RandomPathFilter(rng) { | |
@Override | |
protected boolean accept(String name) { | |
name = name.replace("/JPEGImages/", "/Annotations/").replace(".jpg", ".xml"); | |
try { | |
return new File(new URI(name)).exists(); | |
} catch (URISyntaxException ex) { | |
throw new RuntimeException(ex); | |
} | |
} | |
}; | |
InputSplit[] data = new FileSplit(imageDir, NativeImageLoader.ALLOWED_FORMATS, rng).sample(pathFilter, 0.8, 0.2); | |
InputSplit trainData = data[0]; | |
InputSplit testData = data[1]; | |
ObjectDetectionRecordReader recordReaderTrain = new ObjectDetectionRecordReader(height, width, nChannels, | |
gridHeight, gridWidth, new VocLabelProvider(dataDir)); | |
recordReaderTrain.initialize(trainData); | |
ObjectDetectionRecordReader recordReaderTest = new ObjectDetectionRecordReader(height, width, nChannels, | |
gridHeight, gridWidth, new VocLabelProvider(dataDir)); | |
recordReaderTest.initialize(testData); | |
// ObjectDetectionRecordReader performs regression, so we need to specify it here | |
RecordReaderDataSetIterator train = new RecordReaderDataSetIterator(recordReaderTrain, batchSize, 1, 1, true); | |
train.setPreProcessor(new ImagePreProcessingScaler(0, 1)); | |
RecordReaderDataSetIterator test = new RecordReaderDataSetIterator(recordReaderTest, 1, 1, 1, true); | |
test.setPreProcessor(new ImagePreProcessingScaler(0, 1)); | |
ComputationGraph model; | |
String modelFilename = "model_rbc.zip"; | |
if (new File(modelFilename).exists()) { | |
log.info("Load model..."); | |
model = ModelSerializer.restoreComputationGraph(modelFilename); | |
} else { | |
log.info("Build model..."); | |
ComputationGraph pretrained = (ComputationGraph)new TinyYOLO().initPretrained(); | |
INDArray priors = Nd4j.create(priorBoxes); | |
FineTuneConfiguration fineTuneConf = new FineTuneConfiguration.Builder() | |
.seed(seed) | |
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT) | |
.gradientNormalization(GradientNormalization.RenormalizeL2PerLayer) | |
.gradientNormalizationThreshold(1.0) | |
.updater(new Adam.Builder().learningRate(learningRate).build()) | |
//.updater(new Nesterovs.Builder().learningRate(learningRate).momentum(lrMomentum).build()) | |
.activation(Activation.IDENTITY) | |
.trainingWorkspaceMode(WorkspaceMode.SEPARATE) | |
.inferenceWorkspaceMode(WorkspaceMode.SEPARATE) | |
.build(); | |
model = new TransferLearning.GraphBuilder(pretrained) | |
.fineTuneConfiguration(fineTuneConf) | |
.removeVertexKeepConnections("conv2d_9") | |
.addLayer("convolution2d_9", | |
new ConvolutionLayer.Builder(1,1) | |
.nIn(1024) | |
.nOut(nBoxes * (5 + nClasses)) | |
.stride(1,1) | |
.convolutionMode(ConvolutionMode.Same) | |
.weightInit(WeightInit.UNIFORM) | |
.hasBias(false) | |
.activation(Activation.IDENTITY) | |
.build(), | |
"leaky_re_lu_8") | |
.addLayer("outputs", | |
new Yolo2OutputLayer.Builder() | |
.lambbaNoObj(lambdaNoObj) | |
.lambdaCoord(lambdaCoord) | |
.boundingBoxPriors(priors) | |
.build(), | |
"convolution2d_9") | |
.setOutputs("outputs") | |
.build(); | |
System.out.println(model.summary(InputType.convolutional(height, width, nChannels))); | |
log.info("Train model..."); | |
model.setListeners(new ScoreIterationListener(1)); | |
for (int i = 0; i < nEpochs; i++) { | |
train.reset(); | |
while (train.hasNext()) { | |
model.fit(train.next()); | |
} | |
log.info("*** Completed epoch {} ***", i); | |
} | |
ModelSerializer.writeModel(model, modelFilename, true); | |
} | |
// visualize results on the test set | |
NativeImageLoader imageLoader = new NativeImageLoader(); | |
CanvasFrame frame = new CanvasFrame("RedBloodCellDetection"); | |
OpenCVFrameConverter.ToMat converter = new OpenCVFrameConverter.ToMat(); | |
org.deeplearning4j.nn.layers.objdetect.Yolo2OutputLayer yout = | |
(org.deeplearning4j.nn.layers.objdetect.Yolo2OutputLayer)model.getOutputLayer(0); | |
List<String> labels = train.getLabels(); | |
test.setCollectMetaData(true); | |
while (test.hasNext() && frame.isVisible()) { | |
org.nd4j.linalg.dataset.DataSet ds = test.next(); | |
RecordMetaDataImageURI metadata = (RecordMetaDataImageURI)ds.getExampleMetaData().get(0); | |
INDArray features = ds.getFeatures(); | |
INDArray results = model.outputSingle(features); | |
List<DetectedObject> objs = yout.getPredictedObjects(results, detectionThreshold); | |
File file = new File(metadata.getURI()); | |
log.info(file.getName() + ": " + objs); | |
Mat mat = imageLoader.asMat(features); | |
Mat convertedMat = new Mat(); | |
mat.convertTo(convertedMat, CV_8U, 255, 0); | |
int w = metadata.getOrigW() * 2; | |
int h = metadata.getOrigH() * 2; | |
Mat image = new Mat(); | |
resize(convertedMat, image, new Size(w, h)); | |
for (DetectedObject obj : objs) { | |
double[] xy1 = obj.getTopLeftXY(); | |
double[] xy2 = obj.getBottomRightXY(); | |
String label = labels.get(obj.getPredictedClass()); | |
int x1 = (int) Math.round(w * xy1[0] / gridWidth); | |
int y1 = (int) Math.round(h * xy1[1] / gridHeight); | |
int x2 = (int) Math.round(w * xy2[0] / gridWidth); | |
int y2 = (int) Math.round(h * xy2[1] / gridHeight); | |
rectangle(image, new Point(x1, y1), new Point(x2, y2), Scalar.RED); | |
putText(image, label, new Point(x1 + 2, y2 - 2), FONT_HERSHEY_DUPLEX, 1, Scalar.GREEN); | |
} | |
frame.setTitle(new File(metadata.getURI()).getName() + " - RedBloodCellDetection"); | |
frame.setCanvasSize(w, h); | |
frame.showImage(converter.convert(image)); | |
frame.waitKey(); | |
} | |
frame.dispose(); | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment