Created
December 26, 2021 08:06
-
-
Save Park-Developer/56ac1b19a0903aca60e1c2548e0be253 to your computer and use it in GitHub Desktop.
Object Detection ex1
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow_hub as hub | |
import cv2 | |
import numpy | |
import tensorflow as tf | |
import pandas as pd | |
# Carregar modelos | |
detector = hub.load("https://tfhub.dev/tensorflow/efficientdet/lite2/detection/1") | |
labels = pd.read_csv('labels.csv',sep=';',index_col='ID') | |
labels = labels['OBJECT (2017 REL.)'] | |
cap = cv2.VideoCapture(0) | |
width = 512 | |
height = 512 | |
while(True): | |
#Capture frame-by-frame | |
ret, frame = cap.read() | |
#Resize to respect the input_shape | |
inp = cv2.resize(frame, (width , height )) | |
#Convert img to RGB | |
rgb = cv2.cvtColor(inp, cv2.COLOR_BGR2RGB) | |
#Is optional but i recommend (float convertion and convert img to tensor image) | |
rgb_tensor = tf.convert_to_tensor(rgb, dtype=tf.uint8) | |
#Add dims to rgb_tensor | |
rgb_tensor = tf.expand_dims(rgb_tensor , 0) | |
boxes, scores, classes, num_detections = detector(rgb_tensor) | |
pred_labels = classes.numpy().astype('int')[0] | |
pred_labels = [labels[i] for i in pred_labels] | |
pred_boxes = boxes.numpy()[0].astype('int') | |
pred_scores = scores.numpy()[0] | |
#loop throughout the detections and place a box around it | |
for score, (ymin,xmin,ymax,xmax), label in zip(pred_scores, pred_boxes, pred_labels): | |
if score < 0.5: | |
continue | |
score_txt = f'{100 * round(score,0)}' | |
img_boxes = cv2.rectangle(rgb,(xmin, ymax),(xmax, ymin),(0,255,0),1) | |
font = cv2.FONT_HERSHEY_SIMPLEX | |
cv2.putText(img_boxes,label,(xmin, ymax-10), font, 0.5, (255,0,0), 1, cv2.LINE_AA) | |
cv2.putText(img_boxes,score_txt,(xmax, ymax-10), font, 0.5, (255,0,0), 1, cv2.LINE_AA) | |
#Display the resulting frame | |
cv2.imshow('black and white',img_boxes) | |
if cv2.waitKey(1) & 0xFF == ord('q'): | |
break | |
# When everything done, release the capture | |
cap.release() | |
cv2.destroyAllWindows() | |
#https://towardsdatascience.com/object-detection-with-tensorflow-model-and-opencv-d839f3e42849 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment