Last active
April 27, 2017 15:58
-
-
Save PatWie/89950d3f8491a9f0d84125dca0945afa to your computer and use it in GitHub Desktop.
distributed TensorFlow
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
# File: base.py | |
# Author: Patrick Wieschollek <[email protected]> | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import numpy as np | |
import tensorflow as tf | |
import argparse | |
""" | |
This example demonstrates how to use TensorFlow in a distributed setting. | |
Prepare | |
----------- | |
Make sure all machines can communicate with each other. UFW (uncomplicated firewall) can used by | |
ssh machineA | |
sudo ufw allow from machineB | |
ssh machineB | |
sudo ufw allow from machineA | |
Run | |
-------- | |
- ssh machine A | |
- python dist.py --job_name ps --task_index 0 | |
- python dist.py --job_name worker --task_index 0 | |
- ssh machine B | |
- python dist.py --job_name worker --task_index 1 | |
""" | |
def run_training(server, cluster_spec, gpu_index): | |
"""define graph layout | |
Args: | |
server (tf.train.server): informtion about current entity | |
cluster_spec (tf.train.ClusterSpec): information about entire cluster | |
gpu_index (int): id of gpu which should be used by current worker | |
""" | |
num_workers = len(cluster_spec.as_dict()['worker']) | |
task_index = server.server_def.task_index | |
is_chief = (task_index == 0) | |
with tf.Graph().as_default(): | |
with tf.device(tf.train.replica_device_setter(worker_device="/job:worker/task:%d" % task_index, | |
cluster=cluster_spec)): | |
with tf.device('/cpu:0'): | |
global_step = tf.get_variable('global_step', [], | |
initializer=tf.constant_initializer(0), trainable=False) | |
with tf.device('/gpu:%d' % (gpu_index)): | |
# simple classification model | |
x = tf.placeholder(dtype=tf.float32, shape=[None, 28, 28]) | |
y = tf.placeholder(dtype=tf.int64, shape=[None]) | |
W = tf.Variable(tf.zeros([784, 10])) # noqa | |
b = tf.Variable(tf.zeros([10])) | |
x_re = tf.reshape(x, [-1, 28 * 28]) | |
logits = tf.matmul(x_re, W) + b | |
individual_costs = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=logits) | |
costs = tf.reduce_mean(individual_costs) | |
y_pred = tf.nn.softmax(logits) | |
# Define loss and optimizer | |
opt = tf.train.GradientDescentOptimizer(0.01) | |
opt = tf.train.SyncReplicasOptimizer(opt, replicas_to_aggregate=num_workers, | |
total_num_replicas=num_workers) | |
train_step = opt.minimize(costs, global_step=global_step) | |
# Test trained model | |
correct_prediction = tf.equal(y, tf.argmax(y_pred, 1)) | |
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) | |
init_token_op = opt.get_init_tokens_op() | |
chief_queue_runner = opt.get_chief_queue_runner() | |
init = tf.global_variables_initializer() | |
sv = tf.train.Supervisor(is_chief=is_chief, | |
init_op=init, | |
global_step=global_step) | |
# Create a session for running Ops on the Graph. | |
config = tf.ConfigProto(allow_soft_placement=True) | |
sess = sv.prepare_or_wait_for_session(server.target, config=config) | |
if is_chief: | |
sv.start_queue_runners(sess, [chief_queue_runner]) | |
sess.run(init_token_op) | |
for i in range(100000): | |
x_data = np.random.randn(100, 28, 28) | |
y_data = np.random.randint(10, size=100) | |
_, cost, acc, step = sess.run([train_step, costs, accuracy, global_step], | |
feed_dict={x: x_data, y: y_data}) | |
print(cost) | |
def main(): | |
""" | |
In the distributed setting as far as I understan, there are two kind of entities: | |
- parameter-server "ps" | |
- worker "worker" | |
Each of those have an id: When having 2 ps and 3 worker, then the task_index is | |
- 0 for first ps | |
- 1 for second ps | |
- 0 for first worker | |
- 1 for second worker | |
- 2 for third worker | |
""" | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--task_index', help='identity number', type=int) | |
parser.add_argument('--job_name', help='identity number', type=str) | |
args = parser.parse_args() | |
assert args.job_name in ['ps', 'worker'] | |
# simple config similar to cluster_spec but allow to specify the used gpu's | |
distr_config = { | |
'ps': ['machineA:2222'], | |
'worker': [ | |
{'host': 'machineA:2223', 'gpu': 0}, | |
{'host': 'machineB:2224', 'gpu': 1} | |
] | |
} | |
# specify cluster layout | |
ps_hosts = distr_config['ps'] | |
worker_hosts = [k['host'] for k in distr_config['worker']] | |
cluster_spec = tf.train.ClusterSpec({"ps": ps_hosts, "worker": worker_hosts}) | |
# specify current entity | |
server = tf.train.Server(cluster_spec, job_name=args.job_name, task_index=args.task_index) | |
if args.job_name == "ps": | |
server.join() | |
elif args.job_name == "worker": | |
# each worker is assigned to a different gpu | |
gpu_index = distr_config['worker'][args.task_index]['gpu'] | |
run_training(server, cluster_spec, gpu_index) | |
if __name__ == '__main__': | |
#tf.app.run() | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment