Last active
February 10, 2021 00:40
-
-
Save PatWie/b6e62847e8997f7f30f26ac50175d352 to your computer and use it in GitHub Desktop.
Training ResNet50 in TensorFlow 2.0
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
import numpy as np | |
BATCH = 2 | |
NUM_EPOCHS = 25 | |
""" | |
ResNet50 is implemented here: | |
https://github.com/tensorflow/tensorflow/blob/bd754067dac90182d883f621b775d76ec7c6b87d/tensorflow/python/eager/benchmarks/resnet50/resnet50.py#L1 | |
""" | |
class FakeData(object): | |
def __init__(self): | |
super(FakeData, self).__init__() | |
self.length = 100 | |
self.X_train = np.random.random((224, 224, 3)).astype('float32') | |
self.Y_train = np.array([np.random.randint(1000)]).astype('int32') | |
def __iter__(self): | |
for _ in range(self.length): | |
yield self.X_train, self.Y_train | |
def __len__(self): | |
return self.length | |
def output_shapes(self): | |
return (self.X_train.shape, self.Y_train.shape) | |
def output_types(self): | |
return (tf.float32, tf.int32) | |
df = FakeData() | |
def get_data(df): | |
tdf = tf.data.Dataset.from_generator( | |
generator=df.__iter__, | |
output_types=df.output_types(), | |
output_shapes=df.output_shapes()) | |
tdf = tdf.batch(BATCH) | |
tdf = tdf.prefetch(tf.data.experimental.AUTOTUNE) | |
return tdf | |
# see https://www.tensorflow.org/guide/distributed_training#mirroredstrategy | |
mirrored_strategy = tf.distribute.MirroredStrategy() | |
with mirrored_strategy.scope(): | |
model = tf.keras.applications.resnet.ResNet50( | |
input_shape=df.output_shapes()[0], | |
include_top=True, | |
weights=None) | |
model.compile( | |
optimizer=tf.keras.optimizers.SGD(lr=0.001), | |
loss='binary_crossentropy', | |
metrics=['accuracy']) | |
model.fit(get_data(df), epochs=NUM_EPOCHS) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Line 18 is not generating an one-hot label. I was able to run after changing it to one-hot variable.