Last active
July 8, 2021 23:53
-
-
Save PetrochukM/a51defb2dc9506945f58a165026d1a96 to your computer and use it in GitHub Desktop.
Tensor2Tensor Subword Text Tokenizer.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# coding=utf-8 | |
# Copyright 2017 The Tensor2Tensor Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import collections | |
import logging | |
import re | |
import sys | |
import unicodedata | |
# Dependency imports | |
import six | |
from six.moves import xrange # pylint: disable=redefined-builtin | |
logger = logging.getLogger(__name__) | |
# This set contains all letter and number characters. | |
_ALPHANUMERIC_CHAR_SET = set( | |
six.unichr(i) for i in xrange(sys.maxunicode) | |
if (unicodedata.category(six.unichr(i)).startswith("L") or | |
unicodedata.category(six.unichr(i)).startswith("N"))) | |
# Regular expression for unescaping token strings. | |
# '\u' is converted to '_' | |
# '\\' is converted to '\' | |
# '\213;' is converted to unichr(213) | |
_UNESCAPE_REGEX = re.compile(r"\\u|\\\\|\\([0-9]+);") | |
_ESCAPE_CHARS = set(u"\\_u;0123456789") | |
def native_to_unicode_py2(s): | |
"""Python 2: transform native string to Unicode.""" | |
return s if isinstance(s, unicode) else s.decode("utf8") | |
# Conversion between Unicode and UTF-8, if required (on Python2) | |
if six.PY2: | |
native_to_unicode = native_to_unicode_py2 | |
unicode_to_native = lambda s: s.encode("utf-8") | |
else: | |
# No conversion required on Python3 | |
native_to_unicode = lambda s: s | |
unicode_to_native = lambda s: s | |
def encode(text): | |
""" | |
Encode a unicode string as a list of tokens. | |
Args: | |
text: a unicode string | |
Returns: | |
a list of tokens as Unicode strings | |
""" | |
if not text: | |
return [] | |
ret = [] | |
token_start = 0 | |
# Classify each character in the input string | |
is_alnum = [c in _ALPHANUMERIC_CHAR_SET for c in text] | |
for pos in xrange(1, len(text)): | |
if is_alnum[pos] != is_alnum[pos - 1]: | |
token = text[token_start:pos] | |
if token != u" " or token_start == 0: | |
ret.append(token) | |
token_start = pos | |
final_token = text[token_start:] | |
ret.append(final_token) | |
return ret | |
def decode(tokens): | |
""" | |
Decode a list of tokens to a unicode string. | |
Args: | |
tokens: a list of Unicode strings | |
Returns: | |
a unicode string | |
""" | |
token_is_alnum = [t[0] in _ALPHANUMERIC_CHAR_SET for t in tokens] | |
ret = [] | |
for i, token in enumerate(tokens): | |
if i > 0 and token_is_alnum[i - 1] and token_is_alnum[i]: | |
ret.append(u" ") | |
ret.append(token) | |
return "".join(ret) | |
def _escape_token(token, alphabet): | |
""" | |
Escape away underscores and OOV characters and append '_'. | |
This allows the token to be experessed as the concatenation of a list | |
of subtokens from the vocabulary. The underscore acts as a sentinel | |
which allows us to invertibly concatenate multiple such lists. | |
Args: | |
token: A unicode string to be escaped. | |
alphabet: A set of all characters in the vocabulary's alphabet. | |
Returns: | |
escaped_token: An escaped unicode string. | |
Raises: | |
ValueError: If the provided token is not unicode. | |
""" | |
if not isinstance(token, six.text_type): | |
raise ValueError("Expected string type for token, got %s" % type(token)) | |
token = token.replace(u"\\", u"\\\\").replace(u"_", u"\\u") | |
ret = [c if c in alphabet and c != u"\n" else r"\%d;" % ord(c) for c in token] | |
return u"".join(ret) + "_" | |
def _unescape_token(escaped_token): | |
""" | |
Inverse of _escape_token(). | |
Args: | |
escaped_token: a unicode string | |
Returns: | |
token: a unicode string | |
""" | |
def match(m): | |
if m.group(1) is None: | |
return u"_" if m.group(0) == u"\\u" else u"\\" | |
try: | |
return six.unichr(int(m.group(1))) | |
except (ValueError, OverflowError) as _: | |
return "" | |
trimmed = escaped_token[:-1] if escaped_token.endswith("_") else escaped_token | |
return _UNESCAPE_REGEX.sub(match, trimmed) | |
class SubwordTextTokenizer(object): | |
"""Class for invertibly encoding text using a limited vocabulary. | |
Invertibly encodes a native string as a sequence of subtokens from a limited | |
vocabulary. | |
A SubwordTextTokenizer is built from a corpus (so it is tailored to the text in | |
the corpus), and stored to a file. See text_encoder_build_subword.py. | |
It can then be loaded and used to encode/decode any text. | |
Encoding has four phases: | |
1. Tokenize into a list of tokens. Each token is a unicode string of either | |
all alphanumeric characters or all non-alphanumeric characters. We drop | |
tokens consisting of a single space that are between two alphanumeric | |
tokens. | |
2. Escape each token. This escapes away special and out-of-vocabulary | |
characters, and makes sure that each token ends with an underscore, and | |
has no other underscores. | |
3. Represent each escaped token as a the concatenation of a list of subtokens | |
from the limited vocabulary. Subtoken selection is done greedily from | |
beginning to end. That is, we construct the list in order, always picking | |
the longest subtoken in our vocabulary that matches a prefix of the | |
remaining portion of the encoded token. | |
4. Concatenate these lists. This concatenation is invertible due to the | |
fact that the trailing underscores indicate when one list is finished. | |
""" | |
def __init__(self, filename=None): | |
"""Initialize and read from a file, if provided.""" | |
self._alphabet = set() | |
if filename is not None: | |
self._load_from_file(filename) | |
def encode(self, raw_text): | |
"""Converts a native string to a list of subtoken ids. | |
Args: | |
raw_text: a native string. | |
Returns: | |
a list of integers in the range [0, vocab_size) | |
""" | |
return self._tokens_to_subtoken(encode(native_to_unicode(raw_text))) | |
def decode(self, subtokens): | |
"""Converts a sequence of subtoken ids to a native string. | |
Args: | |
subtokens: a list of integers in the range [0, vocab_size) | |
Returns: | |
a native string | |
""" | |
return unicode_to_native(decode(self._subtoken_to_tokens(subtokens))) | |
@property | |
def vocab_size(self): | |
"""The subtoken vocabulary size.""" | |
return len(self._all_subtoken_strings) | |
def _tokens_to_subtoken(self, tokens): | |
""" | |
Converts a list of tokens to a list of subtoken ids. | |
Args: | |
tokens: a list of strings. | |
Returns: | |
a list of integers in the range [0, vocab_size) | |
""" | |
ret = [] | |
for token in tokens: | |
ret.extend( | |
self._escaped_token_to_subtoken_strings(_escape_token(token, self._alphabet))) | |
return ret | |
def _subtoken_to_tokens(self, subtokens): | |
"""Converts a list of subtoken ids to a list of tokens. | |
Args: | |
subtokens: a list of integers in the range [0, vocab_size) | |
Returns: | |
a list of strings. | |
""" | |
concatenated = "".join(subtokens) | |
split = concatenated.split("_") | |
return [_unescape_token(t + "_") for t in split if t] | |
def _escaped_token_to_subtoken_strings(self, escaped_token): | |
"""Converts an escaped token string to a list of subtoken strings. | |
Args: | |
escaped_token: An escaped token as a unicode string. | |
Returns: | |
A list of subtokens as unicode strings. | |
""" | |
# NOTE: This algorithm is greedy; it won't necessarily produce the "best" | |
# list of subtokens. | |
ret = [] | |
start = 0 | |
token_len = len(escaped_token) | |
while start < token_len: | |
for end in xrange(min(token_len, start + self._max_subtoken_len), start, -1): | |
subtoken = escaped_token[start:end] | |
if subtoken in self._all_subtoken_strings: | |
ret.append(subtoken) | |
start = end | |
break | |
else: # Did not break | |
# If there is no possible encoding of the escaped token then one of the | |
# characters in the token is not in the alphabet. This should be | |
# impossible and would be indicative of a bug. | |
assert False, "Token substring not found in subtoken vocabulary." | |
return ret | |
@classmethod | |
def build_to_target_size(cls, target_size, token_counts, min_val, max_val, num_iterations=4): | |
"""Builds a SubwordTextTokenizer that has `vocab_size` near `target_size`. | |
Uses simple recursive binary search to find a minimum token count that most | |
closely matches the `target_size`. | |
Args: | |
target_size: Desired vocab_size to approximate. | |
token_counts: A dictionary of token counts, mapping string to int. | |
min_val: An integer; lower bound for the minimum token count. | |
max_val: An integer; upper bound for the minimum token count. | |
num_iterations: An integer; how many iterations of refinement. | |
Returns: | |
A SubwordTextTokenizer instance. | |
Raises: | |
ValueError: If `min_val` is greater than `max_val`. | |
""" | |
if min_val > max_val: | |
raise ValueError("Lower bound for the minimum token count " | |
"is greater than the upper bound.") | |
def bisect(min_val, max_val): | |
"""Bisection to find the right size.""" | |
present_count = (max_val + min_val) // 2 | |
logger.info("Trying min_count %d" % present_count) | |
subtokenizer = cls() | |
subtokenizer.build_from_token_counts(token_counts, present_count, num_iterations) | |
# If min_val == max_val, we can't do any better than this. | |
if subtokenizer.vocab_size == target_size or min_val >= max_val: | |
return subtokenizer | |
if subtokenizer.vocab_size > target_size: | |
other_subtokenizer = bisect(present_count + 1, max_val) | |
else: | |
other_subtokenizer = bisect(min_val, present_count - 1) | |
if other_subtokenizer is None: | |
return subtokenizer | |
if (abs(other_subtokenizer.vocab_size - target_size) < | |
abs(subtokenizer.vocab_size - target_size)): | |
return other_subtokenizer | |
return subtokenizer | |
return bisect(min_val, max_val) | |
def build_from_token_counts(self, token_counts, min_count, num_iterations=4): | |
"""Train a SubwordTextTokenizer based on a dictionary of word counts. | |
Args: | |
token_counts: a dictionary of Unicode strings to int. | |
min_count: an integer - discard subtokens with lower counts. | |
num_iterations: an integer. how many iterations of refinement. | |
""" | |
self._init_alphabet_from_tokens(six.iterkeys(token_counts)) | |
# Bootstrap the initial list of subtokens with the characters from the | |
# alphabet plus the escaping characters. | |
self._init_subtokens_from_list(list(self._alphabet)) | |
# We build iteratively. On each iteration, we segment all the words, | |
# then count the resulting potential subtokens, keeping the ones | |
# with high enough counts for our new vocabulary. | |
if min_count < 1: | |
min_count = 1 | |
for i in xrange(num_iterations): | |
logger.info("Iteration {0}".format(i)) | |
# Collect all substrings of the encoded token that break along current | |
# subtoken boundaries. | |
subtoken_counts = collections.defaultdict(int) | |
for token, count in six.iteritems(token_counts): | |
escaped_token = _escape_token(token, self._alphabet) | |
subtokens = self._escaped_token_to_subtoken_strings(escaped_token) | |
start = 0 | |
for subtoken in subtokens: | |
for end in xrange(start + 1, len(escaped_token) + 1): | |
new_subtoken = escaped_token[start:end] | |
subtoken_counts[new_subtoken] += count | |
start += len(subtoken) | |
# Array of sets of candidate subtoken strings, by length. | |
len_to_subtoken_strings = [] | |
for subtoken_string, count in six.iteritems(subtoken_counts): | |
lsub = len(subtoken_string) | |
if count >= min_count: | |
while len(len_to_subtoken_strings) <= lsub: | |
len_to_subtoken_strings.append(set()) | |
len_to_subtoken_strings[lsub].add(subtoken_string) | |
# Consider the candidates longest to shortest, so that if we accept | |
# a longer subtoken string, we can decrement the counts of its | |
# prefixes. | |
new_subtoken_strings = [] | |
for lsub in xrange(len(len_to_subtoken_strings) - 1, 0, -1): | |
subtoken_strings = len_to_subtoken_strings[lsub] | |
for subtoken_string in subtoken_strings: | |
count = subtoken_counts[subtoken_string] | |
if count >= min_count: | |
# Exclude alphabet tokens here, as they must be included later, | |
# explicitly, regardless of count. | |
if subtoken_string not in self._alphabet: | |
new_subtoken_strings.append((count, subtoken_string)) | |
for l in xrange(1, lsub): | |
subtoken_counts[subtoken_string[:l]] -= count | |
# Include the alphabet explicitly to guarantee all strings are | |
# encodable. | |
new_subtoken_strings.extend((subtoken_counts.get(a, 0), a) for a in self._alphabet) | |
new_subtoken_strings.sort(reverse=True) | |
# Reinitialize to the candidate vocabulary. | |
self._init_subtokens_from_list([subtoken for _, subtoken in new_subtoken_strings]) | |
logger.info("vocab_size = %d" % self.vocab_size) | |
def _init_subtokens_from_list(self, subtoken_strings): | |
"""Initialize token information from a list of subtoken strings.""" | |
# we remember the maximum length of any subtoken to avoid having to | |
# check arbitrarily long strings. | |
self._all_subtoken_strings = set([s for s in subtoken_strings if s]) | |
self._max_subtoken_len = max([len(s) for s in subtoken_strings]) | |
def _init_alphabet_from_tokens(self, tokens): | |
"""Initialize alphabet from an iterable of token or subtoken strings.""" | |
# Include all characters from all tokens in the alphabet to guarantee that | |
# any token can be encoded. Additionally, include all escaping | |
# characters. | |
self._alphabet = {c for token in tokens for c in token} | |
self._alphabet |= _ESCAPE_CHARS | |
def _load_from_file(self, filename): | |
"""Load from a file.""" | |
subtoken_strings = [] | |
with open(filename) as f: | |
for line in f: | |
subtoken_strings.append(native_to_unicode(native_to_unicode(line.strip()[1:-1]))) | |
self._init_subtokens_from_list(subtoken_strings) | |
self._init_alphabet_from_tokens(subtoken_strings) | |
def store_to_file(self, filename): | |
with open(filename, "w") as f: | |
for subtoken_string in self._all_subtoken_strings: | |
f.write("'" + unicode_to_native(subtoken_string) + "'\n") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import unittest | |
import collections | |
import mock | |
import subword_text_tokenizer | |
class SubwordTextTokenizerTest(unittest.TestCase): | |
def test_encode_decode(self): | |
corpus = ('This is a corpus of text that provides a bunch of tokens from which ' | |
'to build a vocabulary. It will be used when strings are encoded ' | |
'with a SubwordTextTokenizer subclass. The encoder was coded by a coder.') | |
token_counts = collections.Counter(corpus.split(' ')) | |
alphabet = set(corpus) ^ {' '} | |
original = 'This is a coded sentence encoded by the SubwordTextTokenizer.' | |
token_counts.update(original.split(' ')) | |
encoder = subword_text_tokenizer.SubwordTextTokenizer.build_to_target_size( | |
100, token_counts, 2, 10) | |
# Encoding should be reversible. | |
encoded = encoder.encode(original) | |
decoded = encoder.decode(encoded) | |
self.assertEqual(original, decoded) | |
# The substrings coded and coder are frequent enough in the corpus that | |
# they should appear in the vocabulary even though they are substrings | |
# of other included strings. | |
subtoken_strings = encoded | |
self.assertIn('encoded_', subtoken_strings) | |
self.assertIn('coded_', subtoken_strings) | |
self.assertIn('SubwordTextTokenizer', encoder._all_subtoken_strings) | |
self.assertIn('coder', encoder._all_subtoken_strings) | |
# Every character in the corpus should be in the encoder's alphabet and | |
# its subtoken vocabulary. | |
self.assertTrue(alphabet.issubset(encoder._alphabet)) | |
for a in alphabet: | |
self.assertIn(a, encoder._all_subtoken_strings) | |
def test_unicode(self): | |
corpus = 'Cat emoticons. \U0001F638 \U0001F639 \U0001F63A \U0001F63B' | |
token_counts = collections.Counter(corpus.split(' ')) | |
encoder = subword_text_tokenizer.SubwordTextTokenizer.build_to_target_size( | |
100, token_counts, 2, 10) | |
self.assertIn('\U0001F638', encoder._alphabet) | |
self.assertIn('\U0001F63B', encoder._all_subtoken_strings) | |
def test_small_vocab(self): | |
corpus = 'The quick brown fox jumps over the lazy dog' | |
token_counts = collections.Counter(corpus.split(' ')) | |
alphabet = set(corpus) ^ {' '} | |
encoder = subword_text_tokenizer.SubwordTextTokenizer.build_to_target_size( | |
10, token_counts, 2, 10) | |
# All vocabulary elements are in the alphabet and subtoken strings even | |
# if we requested a smaller vocabulary to assure all expected strings | |
# are encodable. | |
self.assertTrue(alphabet.issubset(encoder._alphabet)) | |
for a in alphabet: | |
self.assertIn(a, encoder._all_subtoken_strings) | |
def test_encodable_when_not_in_alphabet(self): | |
corpus = 'the quick brown fox jumps over the lazy dog' | |
token_counts = collections.Counter(corpus.split(' ')) | |
encoder = subword_text_tokenizer.SubwordTextTokenizer.build_to_target_size( | |
100, token_counts, 2, 10) | |
original = 'This has UPPER CASE letters that are out of alphabet' | |
# Early versions could have an infinite loop when breaking into subtokens | |
# if there was any out-of-alphabet characters in the encoded string. | |
encoded = encoder.encode(original) | |
decoded = encoder.decode(encoded) | |
self.assertEqual(original, decoded) | |
encoded_str = ''.join(encoded) | |
self.assertIn('\\84;', encoded_str) | |
@mock.patch.object(subword_text_tokenizer, '_ESCAPE_CHARS', new=set('\\_;13579')) | |
def test_raises_exception_when_not_encodable(self): | |
corpus = 'the quick brown fox jumps over the lazy dog' | |
token_counts = collections.Counter(corpus.split(' ')) | |
# Deliberately exclude some required encoding chars from the alphabet | |
# and token list, making some strings unencodable. | |
encoder = subword_text_tokenizer.SubwordTextTokenizer.build_to_target_size( | |
100, token_counts, 2, 10) | |
original = 'This has UPPER CASE letters that are out of alphabet' | |
# Previously there was a bug which produced an infinite loop in this case. | |
with self.assertRaises(AssertionError): | |
encoder.encode(original) |
There seems to be some mismatch between the code the documentation. For example, the encode function on line 176 does not return a list of integers, instead it returns subtokens.
Can someone point me to a documentation on the algorithm used in this tokenizer?
AssertionError: Token substring not found in subtoken vocabulary.
How do I fix this?
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Removed the TensorFlow dependencies and other arbitrary dependencies from the Tensor2Tensor subword tokenizer. Ran the tests on Python3.0 and ensured things passed.
There are not many good subword tokenizers available in Python.
This one is directly from Google Brain.
Cheers!