Created
December 2, 2014 14:05
-
-
Save PirosB3/98643717a6c27a8a500d to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
extern crate "nalgebra" as na; | |
use std::io::BufferedReader; | |
use std::num::Float; | |
use std::num; | |
use std::collections::HashMap; | |
use std::io::File; | |
use std::rand::distributions::{Exp, IndependentSample}; | |
use na::{DVec, dot}; | |
#[deriving(Clone)] | |
struct DataEntry { | |
features: Vec<f64>, | |
target: f64, | |
feature_vector: DVec<f64> | |
} | |
struct LogisticRegression { | |
dataset: Vec<DataEntry>, | |
weights: DVec<f64> | |
} | |
pub fn sigmoid(x : f64) -> f64 { | |
let minus_x = -x; | |
1.0 / (1.0 + minus_x.exp()) | |
} | |
impl LogisticRegression { | |
pub fn from_data_entries(dataset: &Vec<DataEntry>) -> LogisticRegression { | |
let first = dataset.get(0).unwrap(); | |
let len = first.features.len() + 1; | |
let mut weights : DVec<f64> = DVec::new_zeros(len); | |
for i in range(0, len) { | |
weights[i] = 1.0; | |
} | |
LogisticRegression{ | |
dataset: dataset.clone(), | |
weights: weights | |
} | |
} | |
pub fn train(&mut self, epochs: uint) { | |
for _ in range(0u, epochs) { | |
// Calculate Hypothesys | |
let all_hypothesis : DVec<f64> = self.dataset.iter().map(|el| { | |
let result : f64 = dot(&self.weights, &el.feature_vector); | |
sigmoid(result) | |
}).collect(); | |
let all_errors : f64 = range(0, self.dataset.len()).map(|i| { | |
let h_i = all_hypothesis[i]; | |
let y_i = self.dataset.get(i).unwrap().target; | |
y_i * h_i.log2() + (1.0 - y_i) * (1.0 - h_i).log2() | |
}).fold(0.0, {|a, b| a + b }) / self.dataset.len() as f64; | |
println!("{}", all_errors); | |
let delta_errors : DVec<f64> = range(0u, self.dataset.len()).map(|i| { | |
let h_i = all_hypothesis[i]; | |
let y_i = self.dataset.get(i).unwrap().target; | |
h_i - y_i | |
}).collect(); | |
let weight_updates : DVec<f64> = range(0u, self.weights.len()).map(|i| { | |
let x_i : DVec<f64> = self.dataset.iter().map(|ds| { | |
ds.feature_vector[i] | |
}).collect(); | |
0.001 * dot(&x_i, &delta_errors) | |
}).collect(); | |
self.weights = self.weights - weight_updates; | |
} | |
} | |
} | |
impl DataEntry { | |
pub fn new(splitted_data: &Vec<&str>, target: f64) -> DataEntry { | |
let features: Vec<f64> = splitted_data.iter().filter_map(|el| { | |
from_str(*el) | |
}).collect(); | |
let mut vec : DVec<f64> = DVec::new_zeros(features.len() + 1); | |
vec[0] = 1.0; | |
for f in range(1u, features.len()) { | |
vec[f] = *features.get(f).unwrap(); | |
} | |
DataEntry{ | |
features: features, | |
target: target, | |
feature_vector: vec, | |
} | |
} | |
} | |
fn main() { | |
let path = Path::new("iris.data"); | |
let mut file = BufferedReader::new(File::open(&path)); | |
let mut dataset : Vec<DataEntry> = Vec::new(); | |
{ | |
let mut counter: f64 = 0.0; | |
let mut target_map : HashMap<String, f64> = HashMap::new(); | |
for line in file.lines() { | |
let data = line.unwrap(); | |
let trimmed_data = data.trim(); | |
let mut splitted_data : Vec<&str> = trimmed_data.as_slice().split(',').collect(); | |
let class_type = splitted_data.pop().unwrap().to_string(); | |
let class_target = { | |
if target_map.contains_key(&class_type) { | |
target_map[class_type] | |
} else { | |
target_map.insert(class_type.clone(), counter); | |
counter += 1.0; | |
target_map[class_type] | |
} | |
}; | |
{ | |
let kls = class_type.as_slice(); | |
if kls == "Iris-setosa" || kls == "Iris-versicolor" { | |
dataset.push(DataEntry::new(&splitted_data, class_target)); | |
} | |
} | |
} | |
} | |
let mut log_regr = LogisticRegression::from_data_entries(&dataset); | |
log_regr.train(50000); | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment