Created
December 1, 2014 10:35
-
-
Save PirosB3/ae5939ba7fa69aa03284 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
use std::io::BufferedReader; | |
use std::collections::HashMap; | |
use std::io::File; | |
use std::from_str; | |
use std::rand::distributions::{Exp, IndependentSample}; | |
#[deriving(Clone)] | |
struct DataEntry { | |
features: Vec<f64>, | |
target: f64 | |
} | |
struct LogisticRegression { | |
dataset: Vec<DataEntry>, | |
weights: Vec<f64> | |
} | |
pub fn vector_vector_mul(data_entry: &[f64], weights: &[f64]) -> f64 { | |
let mut total: f64 = weights[0]; | |
let len_weights = weights.len() - 1; | |
let slice_of_weights = weights.slice(1, len_weights); | |
for i in range(0u, len_weights) { | |
total += (data_entry[i] * weights[i]); | |
} | |
total | |
} | |
pub fn sigmoid(x : f64) -> f64 { | |
let minus_x = -x; | |
1.0 / (1.0 + minus_x.exp2()) | |
} | |
impl LogisticRegression { | |
pub fn from_data_entries(dataset: &Vec<DataEntry>) -> LogisticRegression { | |
let first = dataset.get(0).unwrap(); | |
let len = first.features.len() + 1; | |
let mut weights : Vec<f64> = Vec::new(); | |
for i in range(0, len) { | |
weights.push(1.0); | |
} | |
LogisticRegression{ | |
dataset: dataset.clone(), | |
weights: weights | |
} | |
} | |
pub fn train(&mut self, epochs: int) { | |
for i in range(0i, epochs) { | |
// Calculate total error | |
{ | |
let mut cost_of_theta: f64; | |
let mut weight_gradients : Vec<f64>; | |
{ | |
let mut all_hypothesies = self.dataset.iter().map(|ds| { | |
let reality = vector_vector_mul( | |
ds.feature_vector(), | |
self.weights.as_slice() | |
); | |
let reality = sigmoid(reality); | |
-ds.target * reality.log2() - (1.0 - ds.target) * (1.0 - reality).log2() | |
}); | |
cost_of_theta = all_hypothesies.fold(0.0, |a, b| { a + b }) / self.dataset.len() as f64; | |
} | |
println!("{}", cost_of_theta); | |
{ | |
let costs : Vec<f64> = self.dataset.iter().map(|ds| { | |
let reality = vector_vector_mul( | |
ds.feature_vector(), | |
self.weights.as_slice() | |
); | |
sigmoid(reality) | |
}).collect(); | |
weight_gradients = range(0u, self.weights.len()).map(|i| { | |
let all_gradients = range(0u, self.dataset.len()).map(|id| { | |
let ds = self.dataset.get(id).unwrap(); | |
let ds_hypothesys = costs.get(id).unwrap(); | |
let x_of_i = { | |
if i == 0 { | |
1.0 as f64 | |
} else { | |
*ds.feature_vector().get(i-1).unwrap() | |
} | |
}; | |
(*ds_hypothesys - ds.target) * x_of_i | |
}).fold(0.0, |a, b| { a + b }); | |
all_gradients / self.dataset.len() as f64 | |
}).collect(); | |
} | |
for i in range(0u, self.weights.len()) { | |
let mut weight = self.weights.get_mut(i).unwrap(); | |
*weight -= 0.001 * *weight_gradients.get(i).unwrap(); | |
} | |
} | |
} | |
} | |
} | |
impl DataEntry { | |
pub fn new(splitted_data: &Vec<&str>, target: f64) -> DataEntry { | |
let features: Vec<f64> = splitted_data.iter().filter_map(|el| { | |
from_str(*el) | |
}).collect(); | |
DataEntry{ | |
features: features, | |
target: target | |
} | |
} | |
pub fn feature_vector(&self) -> &[f64] { | |
self.features.as_slice() | |
} | |
} | |
fn main() { | |
let path = Path::new("iris.data"); | |
let mut file = BufferedReader::new(File::open(&path)); | |
let mut dataset : Vec<DataEntry> = Vec::new(); | |
{ | |
let mut counter: f64 = 0.0; | |
let mut target_map : HashMap<String, f64> = HashMap::new(); | |
for line in file.lines() { | |
let data = line.unwrap(); | |
let trimmed_data = data.trim(); | |
let mut splitted_data : Vec<&str> = trimmed_data.as_slice().split(',').collect(); | |
let class_type = splitted_data.pop().unwrap().to_string(); | |
let class_target = { | |
if target_map.contains_key(&class_type) { | |
target_map[class_type] | |
} else { | |
target_map.insert(class_type.clone(), counter); | |
counter += 1.0; | |
target_map[class_type] | |
} | |
}; | |
{ | |
let kls = class_type.as_slice(); | |
if kls == "Iris-setosa" || kls == "Iris-versicolor" { | |
dataset.push(DataEntry::new(&splitted_data, class_target)); | |
} | |
} | |
} | |
} | |
let mut log_regr = LogisticRegression::from_data_entries(&dataset); | |
log_regr.train(10000000000); | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment