Last active
August 28, 2024 05:34
-
-
Save PoisonAlien/d92e040f3b7849556e7504cd0fcc0c95 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
--- | |
title: "Sequencing run summary" | |
date: "Generated on: `r Sys.Date()`" | |
output: | |
html_document: | |
toc: true | |
toc_depth: 3 | |
toc_float: true | |
self_contained: yes | |
theme: sandstone | |
highlight: tango | |
params: | |
summary_file: NULL | |
bam_manta_files: NULL | |
metrics_dir: NULL | |
filter_stats_file: NULL | |
--- | |
```{r setup, include=FALSE} | |
knitr::opts_chunk$set(echo = FALSE, message = FALSE, warning = FALSE, fig.width = 8) | |
``` | |
<img src="https://www.arcensus-diagnostics.com/wp-content/uploads/arcensus-logo_monochrome-blue-1.svg" height="42" width="250" style="position:absolute;top:30px;right:10px;" > | |
```{r} | |
library(ggplot2) | |
library(plotly) | |
library(data.table) | |
library(kableExtra) | |
#x = data.table::fread("~/Documents/arc_rsa/S7100_240729_1033_summary.tsv") | |
x = data.table::fread(params$summary_file) | |
x$sample_id = as.character(x$sample_id) | |
x$sex = ifelse(test = x$ploidy_estimation == "XY", yes = "♂", no = ifelse(test = x$ploidy_estimation == "XX", yes = "♀", no = "⚤")) | |
#file_pahts = data.table::fread("~/Documents/arc_rsa/S7100_240729_1033.bam_manta_files.tsv") | |
file_pahts = data.table::fread(params$bam_manta_files) | |
file_pahts$sample_id = data.table::tstrsplit(x = file_pahts$sample_id, split = "_", keep = 1) |> unlist() |> as.character() | |
x = merge(file_pahts, x, by = "sample_id", all = TRUE) | |
``` | |
# Arcflows summary | |
## Run summary {.tabset .tabset-fade .tabset-pills} | |
### General info | |
```{r arcflow_gen_stat} | |
dt = x[,.(sample_id, date_received, date_processed, sex, contamination_level)] | |
dt_fp = x[,.(sample_id, BAM_path, SV_path, CNV_path)] | |
kableExtra::kbl(x = dt, col.names = gsub("_", " ", names(dt)), booktabs = TRUE, full_width = TRUE, html_font = "Cambria", escape = FALSE) |> kable_paper(full_width = TRUE) |> kable_styling(bootstrap_options = c("hover", "condensed", "striped")) | |
``` | |
### variant filtering | |
```{r arcflow_var_filt} | |
#filter_stats_dir = "/Users/anand/Documents/arc_rsa/metrics/filterstats/" | |
filter_stats_files = data.table::fread(input = params$filter_stats_file, header = FALSE)$V1 | |
filter_stats = lapply(filter_stats_files, function(y) { | |
y = data.table::fread(y) | |
colnames(y) = "n" | |
y$filter = c("raw", "QC", "gnomadAF10", "gnomadAF05", "gnomadAF02", "arcAF10") | |
y | |
}) | |
names(filter_stats) = basename(path = filter_stats_files) |> data.table::tstrsplit(split = "_", keep = 1) |> unlist() |> as.character() | |
filter_stats = data.table::rbindlist(l = filter_stats, use.names = TRUE, fill = TRUE, idcol = "sample_id") |> data.table::dcast(sample_id ~ filter, value.var = "n") | |
filter_stats = filter_stats[,.(sample_id, raw, QC, gnomadAF10, gnomadAF05,gnomadAF02, arcAF10)] | |
``` | |
```{r mappingKbl} | |
k = kableExtra::kbl(x = filter_stats, col.names = gsub("_", " ", names(filter_stats)), booktabs = TRUE, full_width = TRUE, html_font = "Cambria", escape = FALSE, format.args = list(big.mark = ",")) |> kable_paper(full_width = TRUE) |> kable_styling(bootstrap_options = c("hover", "condensed", "striped", "striped")) | |
k = column_spec(kable_input = k, column = 7, color = "white", | |
background = spec_color(filter_stats$arcAF10, end = 0.7, direction = -1, alpha = 0.6)) | |
k | |
``` | |
### Ancestry | |
```{r arcflow_ancestry} | |
anc = x[,.(sample_id, prob_afr, prob_ami, prob_amr, prob_asj, prob_eas, prob_fin, prob_mid, prob_nfe, prob_oth, prob_sas)] | |
x_anc = data.table::melt(data = anc, id.vars = "sample_id") | |
colnames(x_anc) = c("sample_id", "ancestry", "prob") | |
x_anc$ancestry = gsub(pattern = "prob_", replacement = "", x = x_anc$ancestry) | |
x_anc$ancestry = factor(x = x_anc$ancestry, levels = c('afr', 'ami', 'amr', 'asj', 'eas', 'fin', 'mde', 'nfe', 'oth', 'sas')) | |
col_codes = setNames(nm = c('afr', 'ami', 'amr', 'asj', 'eas', 'fin', 'mde', 'nfe', 'oth', 'sas'), object = c('#941494', '#FFC0CB', '#ED1E24', '#FF7F50', '#108C44', '#002F6C', '#33CC33', '#6AA5CD', '#ABB9B9', '#FF9912')) | |
anc_plot = ggplot(data = x_anc, aes(x = sample_id, y = prob, fill = ancestry))+ geom_bar(stat="identity", colour="white")+scale_fill_manual(values = col_codes)+xlab("")+ylab("Population probability")+theme_minimal()+coord_flip() | |
plotly::ggplotly(p = anc_plot) | |
``` | |
### Result file paths | |
```{r arcflow_filepaths} | |
dt_fp$BAM_path = text_spec(format = "html", x = dt_fp$sample_id, link = dt_fp$BAM_path, underline = TRUE, new_tab = TRUE) | |
dt_fp$SV_path = text_spec(format = "html", x = dt_fp$sample_id, link = dt_fp$SV_path, underline = TRUE, new_tab = TRUE) | |
dt_fp$CNV_path = text_spec(format = "html", x = dt_fp$sample_id, link = dt_fp$CNV_path, underline = TRUE, new_tab = TRUE) | |
kableExtra::kbl(x = dt_fp, col.names = gsub("_", " ", names(dt_fp)), booktabs = TRUE, full_width = TRUE, html_font = "Cambria", escape = FALSE) |> kable_paper(full_width = TRUE) |> kable_styling(bootstrap_options = c("hover", "condensed", "striped")) | |
``` | |
# DRAGEN summary | |
## General Statistics | |
```{r} | |
#metrics_dir = "/Users/anand/Documents/arc_rsa/metrics/" | |
mapping_metric_files = list.files(path = params$metrics_dir, pattern = "*.mapping_metrics.csv", full.names = TRUE) | |
mapping_metrics = lapply(mapping_metric_files, function(x){ | |
xd = data.table::fread(input = x, fill = TRUE, sep = ",") | |
Input_reads = xd[V3 %in% "Total input reads", V4] |> as.numeric() | |
Dup_reads = xd[V1 %in% "MAPPING/ALIGNING SUMMARY"][V3 %in% "Number of duplicate marked reads", V5] |> as.numeric() | |
Properly_paired = xd[V1 %in% "MAPPING/ALIGNING SUMMARY"][V3 %in% "Properly paired reads", V5] |> as.numeric() | |
Unmapped_reads = xd[V1 %in% "MAPPING/ALIGNING SUMMARY"][V3 %in% "Unmapped reads", V5] |> as.numeric() | |
Est_fract_contamination = xd[V1 %in% "MAPPING/ALIGNING SUMMARY"][V3 %in% "Estimated sample contamination", V4] |> as.numeric() | |
Est_readlen = xd[V1 %in% "MAPPING/ALIGNING SUMMARY"][V3 %in% "Estimated read length", V4] |> as.numeric() | |
median_IS = xd[V1 %in% "MAPPING/ALIGNING SUMMARY"][V3 %in% "Insert length: median", V4] |> as.numeric() | |
data.table::data.table(Input_reads, Unmapped_reads, Dup_reads, Properly_paired, median_IS, Est_readlen, Est_fract_contamination) | |
}) | |
names(mapping_metrics) = basename(path = mapping_metric_files) |> data.table::tstrsplit(split = "_", keep = 1) |> unlist() | |
mapping_metrics = data.table::rbindlist(mapping_metrics, use.names = TRUE, fill = TRUE, idcol = "sample_id") | |
``` | |
```{r} | |
k = kableExtra::kbl(x = mapping_metrics, col.names = gsub("_", " ", names(mapping_metrics)), booktabs = TRUE, full_width = TRUE, html_font = "Cambria", escape = FALSE, format.args = list(big.mark = ",")) |> kable_paper(full_width = TRUE) |> kable_styling(bootstrap_options = c("hover", "condensed", "striped", "striped")) | |
k = column_spec(kable_input = k, column = 3, color = "white", | |
background = spec_color(mapping_metrics$Unmapped_reads, end = 0.7, direction = 1, alpha = 0.6, palette = viridisLite::viridis(256, 0.6, 0, 0.7, 1, "turbo"))) | |
k = column_spec(kable_input = k, column = 4, color = "white", | |
background = spec_color(mapping_metrics$Dup_reads, end = 0.7, direction = -1, alpha = 0.6)) | |
k | |
``` | |
## Alignment metrics {.tabset .tabset-fade .tabset-pills} | |
```{r, echo=FALSE} | |
#percent | |
dragen_metrics_pct = lapply(mapping_metric_files, function(x){ | |
xd = data.table::fread(input = x, fill = TRUE, sep = ",") | |
pct_prop_paired_reads = xd[V1 %in% "MAPPING/ALIGNING SUMMARY"][V3 %in% "Properly paired reads", V5] |> as.numeric() | |
pct_paired_discor_reads = xd[V1 %in% "MAPPING/ALIGNING SUMMARY"][V3 %in% "Not properly paired reads (discordant)", V5] |> as.numeric() | |
pct_singleton = xd[V1 %in% "MAPPING/ALIGNING SUMMARY"][V3 %in% "Singleton reads (itself mapped; mate unmapped)", V5] |> as.numeric() | |
pct_unmapped = xd[V1 %in% "MAPPING/ALIGNING SUMMARY"][V3 %in% "Unmapped reads", V5] |> as.numeric() | |
data.table::data.table(pct_prop_paired_reads, pct_paired_discor_reads, pct_singleton, pct_unmapped) | |
}) | |
names(dragen_metrics_pct) = basename(path = mapping_metric_files) |> data.table::tstrsplit(split = "_", keep = 1) |> unlist() | |
dragen_metrics_pct = data.table::rbindlist(dragen_metrics_pct, use.names = TRUE, fill = TRUE, idcol = "sample_id") | |
dragen_metrics_pct = data.table::melt(data = dragen_metrics_pct, id.vars = "sample_id") | |
#Raw | |
dragen_metrics_raw = lapply(mapping_metric_files, function(x){ | |
xd = data.table::fread(input = x, fill = TRUE, sep = ",") | |
raw_prop_paired_reads = xd[V1 %in% "MAPPING/ALIGNING SUMMARY"][V3 %in% "Properly paired reads", V4] |> as.numeric() | |
raw_paired_discor_reads = xd[V1 %in% "MAPPING/ALIGNING SUMMARY"][V3 %in% "Not properly paired reads (discordant)", V4] |> as.numeric() | |
raw_singleton = xd[V1 %in% "MAPPING/ALIGNING SUMMARY"][V3 %in% "Singleton reads (itself mapped; mate unmapped)", V4] |> as.numeric() | |
raw_unmapped = xd[V1 %in% "MAPPING/ALIGNING SUMMARY"][V3 %in% "Unmapped reads", V4] |> as.numeric() | |
data.table::data.table(raw_prop_paired_reads, raw_paired_discor_reads, raw_singleton, raw_unmapped) | |
}) | |
names(dragen_metrics_raw) = basename(path = mapping_metric_files) |> data.table::tstrsplit(split = "_", keep = 1) |> unlist() | |
dragen_metrics_raw = data.table::rbindlist(dragen_metrics_raw, use.names = TRUE, fill = TRUE, idcol = "sample_id") | |
dragen_metrics_raw = data.table::melt(data = dragen_metrics_raw, id.vars = "sample_id") | |
``` | |
### Percentages | |
```{r} | |
dragen_mapping_colrs2 = setNames(nm = c("pct_prop_paired_reads", "pct_paired_discor_reads", "pct_singleton", | |
"pct_unmapped"), object = c('#108C44', '#FF7F50', '#941494', '#ED1E24')) | |
dragen_metrics_pct_plot = ggplot(data = dragen_metrics_pct, aes(x = sample_id, y = value, fill = variable))+geom_bar(stat="identity", colour="white")+theme_minimal()+coord_flip()+scale_fill_manual(values = dragen_mapping_colrs2)+xlab(label = element_blank())+ylab(label = element_blank()) | |
plotly::ggplotly(p = dragen_metrics_pct_plot) | |
``` | |
### Raw | |
```{r} | |
dragen_mapping_colrs = setNames(nm = c("raw_prop_paired_reads", "raw_paired_discor_reads", "raw_singleton", | |
"raw_unmapped"), object = c('#108C44', '#FF7F50', '#941494', '#ED1E24')) | |
dragen_metrics_raw_plot = ggplot(data = dragen_metrics_raw, aes(x = sample_id, y = value, fill = variable))+geom_bar(stat="identity", colour="white")+theme_minimal()+coord_flip()+scale_fill_manual(values = dragen_mapping_colrs)+xlab(label = element_blank())+ylab(label = element_blank()) | |
plotly::ggplotly(p = dragen_metrics_raw_plot) | |
``` | |
## Coverage {.tabset .tabset-fade .tabset-pills} | |
### XY coverage | |
```{r} | |
xy_cov = x[,.(sample_id, autosomal_median_coverage, x_median_coverage, y_median_coverage)] | |
colnames(xy_cov) = c("sample_id", "autosomes", "X", "Y") | |
xy_cov = data.table::melt(data = xy_cov, id.vars = "sample_id") | |
colnames(xy_cov) = c("sample_id", "chromosome", "median_coverage") | |
xy_cov_plot = ggplot(data = xy_cov, aes(x = chromosome, y = median_coverage, fill = chromosome))+geom_bar(stat="identity")+facet_grid(~sample_id)+theme_minimal()+theme(axis.text.x = element_blank())+ylab("Median coverage")+xlab("")+scale_fill_manual(values = list(autosomes = "#34495e", X = "#e84393", Y = "#0984e3")) | |
plotly::ggplotly(p = xy_cov_plot) | |
``` | |
### Genome coverage | |
```{r} | |
wgs_coverage_metric_files = list.files(path = params$metrics_dir, pattern = "*.wgs_coverage_metrics.csv", full.names = TRUE) | |
if(length(wgs_coverage_metric_files) > 0){ | |
genome_cvg = lapply(wgs_coverage_metric_files, function(x){ | |
xd = data.table::fread(input = x, sep = ",", fill = TRUE) | |
xd = xd[V3 %like% "PCT of genome with coverage"][!V3 %like% "inf"][,.(V3, V4)] | |
xd$V3 = gsub(pattern = "PCT of genome with coverage ", replacement = "", x = xd$V3) | |
colnames(xd) = c("coverage", "pct_genome") | |
xd | |
}) | |
names(genome_cvg) = data.table::tstrsplit(x = basename(wgs_coverage_metric_files), split = "_", keep = 1) |> unlist() |> as.character() | |
genome_cvg = data.table::rbindlist(l = genome_cvg, idcol = "sample_id", use.names = TRUE, fill = TRUE) | |
genome_cvg_plot = ggplot(data = genome_cvg, aes(x = sample_id, y = pct_genome, fill = coverage))+ geom_bar(stat="identity", colour="white")+xlab("")+ylab("% Genome")+theme_minimal()+coord_flip() | |
plotly::ggplotly(p = genome_cvg_plot) | |
} | |
``` |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment