Created
November 11, 2017 10:36
-
-
Save PonDad/bc185bdf81735dfd018bda6ce0b37fea to your computer and use it in GitHub Desktop.
【Movidius™NCS&RaspberryPi】リアルタイム物体認識【TensorFlow】
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#! /usr/bin/env python3 | |
from mvnc import mvncapi as mvnc | |
import sys | |
import numpy | |
import cv2 | |
path_to_networks = './' | |
path_to_images = '../../data/images/' | |
graph_filename = 'graph' | |
#image_filename = path_to_images + 'cat.jpg' | |
image_filename = path_to_images + 'shot.png' | |
devices = mvnc.EnumerateDevices() | |
if len(devices) == 0: | |
print('No devices found') | |
quit() | |
device = mvnc.Device(devices[0]) | |
device.OpenDevice() | |
with open(path_to_networks + graph_filename, mode='rb') as f: | |
graphfile = f.read() | |
mean = 128 | |
std = 1/128 | |
categories = [] | |
with open(path_to_networks + 'categories.txt', 'r') as f: | |
for line in f: | |
cat = line.split('\n')[0] | |
if cat != 'classes': | |
categories.append(cat) | |
f.close() | |
print('Number of categories:', len(categories)) | |
with open(path_to_networks + 'inputsize.txt', 'r') as f: | |
reqsize = int(f.readline().split('\n')[0]) | |
graph = device.AllocateGraph(graphfile) | |
cap = cv2.VideoCapture(0) | |
end_flag, c_frame = cap.read() | |
while end_flag == True: | |
#ret, frame = cap.read() | |
#cv2.imshow("Show FLAME Image",c_frame) | |
cv2.imwrite(image_filename, c_frame) | |
img = cv2.imread(image_filename).astype(numpy.float32) | |
dx,dy,dz= img.shape | |
delta=float(abs(dy-dx)) | |
if dx > dy: | |
img=img[int(0.5*delta):dx-int(0.5*delta),0:dy] | |
else: | |
img=img[0:dx,int(0.5*delta):dy-int(0.5*delta)] | |
img = cv2.resize(img, (reqsize, reqsize)) | |
img=cv2.cvtColor(img,cv2.COLOR_BGR2RGB) | |
for i in range(3): | |
img[:,:,i] = (img[:,:,i] - mean) * std | |
print('Start download to NCS...') | |
graph.LoadTensor(img.astype(numpy.float16), 'user object') | |
output, userobj = graph.GetResult() | |
top_inds = output.argsort()[::-1][:5] | |
print(''.join(['*' for i in range(79)])) | |
print('inception-v3 on NCS') | |
print(''.join(['*' for i in range(79)])) | |
for i in range(5): | |
print(top_inds[i], categories[top_inds[i]], output[top_inds[i]]) | |
text = categories[top_inds[0]] + str("{0:.4f}".format(output[top_inds[0]]*100)) + "%" | |
print(''.join(['*' for i in range(79)])) | |
#graph.DeallocateGraph() | |
#device.CloseDevice() | |
print('Finished') | |
font = cv2.FONT_HERSHEY_DUPLEX | |
font_size = 1 | |
font_thickness =2 | |
cv2.putText(c_frame,text,(20,40),font,font_size,(0,140,255),font_thickness,cv2.LINE_AA) | |
cv2.imshow("Movidius™ NCS & RaspberryPi",c_frame) | |
key = cv2.waitKey(1) | |
if key == ord('q'): | |
break | |
end_flag, c_frame = cap.read() | |
cap.release() | |
cv2.destroyAllWindows() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment