Created
March 15, 2021 09:53
-
-
Save PranjalDureja0002/328bea4e048cb59eac99a9c851ecbafb to your computer and use it in GitHub Desktop.
model
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from sklearn.metrics import roc_curve, auc | |
best_depth=dt_grid.best_params_['max_depth'] | |
best_samples=dt_grid.best_params_['min_samples_split'] | |
dt_1 = DecisionTreeClassifier(max_depth=best_depth,min_samples_split=best_samples) | |
dt_1.fit(X_train, y_train) | |
# roc_auc_score(y_true, y_score) the 2nd parameter should be probability estimates of the positive class | |
# not the predicted outputs | |
y_train_pred = pred_func(dt_1,X_train) | |
y_test_pred = pred_func(dt_1,X_test) | |
train_fpr, train_tpr, tr_thresholds = roc_curve(y_train, y_train_pred) | |
test_fpr, test_tpr, te_thresholds = roc_curve(y_test, y_test_pred) | |
plt.plot(train_fpr, train_tpr, label="Train AUC ="+str(auc(train_fpr, train_tpr))) | |
plt.plot(test_fpr, test_tpr, label="Test AUC ="+str(auc(test_fpr, test_tpr))) | |
plt.legend() | |
plt.xlabel("FPR") | |
plt.ylabel("TPR") | |
plt.title("AUC") | |
plt.grid() | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment