Skip to content

Instantly share code, notes, and snippets.

@PranjalDureja0002
Created May 7, 2021 12:54
Show Gist options
  • Save PranjalDureja0002/6d2cef8144a064ef7fa16a7e353343f4 to your computer and use it in GitHub Desktop.
Save PranjalDureja0002/6d2cef8144a064ef7fa16a7e353343f4 to your computer and use it in GitHub Desktop.
model
resnet50 = tf.keras.applications.resnet50
conv_model = resnet50.ResNet50(weights='imagenet', include_top=False, input_shape=(228,228,3))
for layer in conv_model.layers:
layer.trainable = False
x = Conv2D(128, (1, 1), activation = 'relu', name='block6_conv1_table')(conv_model.output)
x = Dropout(0.8, name='block6_dropout_1')(x)
x = Conv2D(128, (1, 1), activation = 'relu', name='block6_conv2_table')(x)
x = Dropout(0.8, name='block6_dropout_2')(x)
table_mask = fun_table(x, conv_model.output)
column_mask = fun_column(x, conv_model.output)
full_model = tf.keras.models.Model(inputs=conv_model.input, outputs=[table_mask, column_mask],name="tablenet")
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment