Created
March 15, 2021 10:02
-
-
Save PranjalDureja0002/a835e1a7d7dd4cbcd8d2a45b03d3735d to your computer and use it in GitHub Desktop.
model
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
x_cfl=XGBClassifier(n_estimators=1000,nthread=-1) | |
x_1=XGBClassifier(n_estimators=500,nthread=-1) | |
x_2=XGBClassifier(n_estimators=500,nthread=-1) | |
x_3 = DecisionTreeClassifier(max_depth=best_depth,min_samples_split=best_samples,class_weight='balanced') | |
x_4 = LogisticRegression(class_weight='balanced') | |
s_clf = StackingClassifier(classifiers=[x_1,x_2,x_3,x_4],meta_classifier=x_cfl) | |
s_clf.fit(X_train,y_train) | |
#sig_clf = CalibratedClassifierCV(x_cfl, method="sigmoid") | |
#sig_clf.fit(X_train_f, y_train_f) | |
y_train_pred = pred_func(s_clf,X_train) | |
y_test_pred = pred_func(s_clf,X_test) | |
print ("The train roc_auc Score is:",roc_auc_score(y_train, y_train_pred )) | |
print("***********************") | |
print("The test roc_auc Score is",roc_auc_score(y_test,y_test_pred)) | |
print("***********************") | |
y_train_pred = s_clf.predict(X_train) | |
y_test_pred = s_clf.predict(X_test) | |
print ("The train f1 Score is:",f1_score(y_train, y_train_pred,average='macro')) | |
print("***********************") | |
print ("The test f1 Score is:",f1_score(y_test, y_test_pred,average='macro')) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment