Last active
September 30, 2021 19:00
-
-
Save Prathmeshp20/0a77cef6b46ad48f5ba16d07a4884495 to your computer and use it in GitHub Desktop.
Assignment13-zoo.ipynb
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "import pandas as pd\nimport numpy as np\nfrom sklearn.neighbors import KNeighborsClassifier\nfrom sklearn.model_selection import cross_val_score\nfrom sklearn.model_selection import GridSearchCV\nimport warnings \nwarnings.filterwarnings(\"ignore\")", | |
"execution_count": 1, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "zoo = pd.read_csv('C:/Users/Prathmesh/Downloads/Zoo.csv')\nzoo.head()", | |
"execution_count": 2, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"execution_count": 2, | |
"data": { | |
"text/plain": " animal name hair feathers eggs milk airborne aquatic predator \\\n0 aardvark 1 0 0 1 0 0 1 \n1 antelope 1 0 0 1 0 0 0 \n2 bass 0 0 1 0 0 1 1 \n3 bear 1 0 0 1 0 0 1 \n4 boar 1 0 0 1 0 0 1 \n\n toothed backbone breathes venomous fins legs tail domestic catsize \\\n0 1 1 1 0 0 4 0 0 1 \n1 1 1 1 0 0 4 1 0 1 \n2 1 1 0 0 1 0 1 0 0 \n3 1 1 1 0 0 4 0 0 1 \n4 1 1 1 0 0 4 1 0 1 \n\n type \n0 1 \n1 1 \n2 4 \n3 1 \n4 1 ", | |
"text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>animal name</th>\n <th>hair</th>\n <th>feathers</th>\n <th>eggs</th>\n <th>milk</th>\n <th>airborne</th>\n <th>aquatic</th>\n <th>predator</th>\n <th>toothed</th>\n <th>backbone</th>\n <th>breathes</th>\n <th>venomous</th>\n <th>fins</th>\n <th>legs</th>\n <th>tail</th>\n <th>domestic</th>\n <th>catsize</th>\n <th>type</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>aardvark</td>\n <td>1</td>\n <td>0</td>\n <td>0</td>\n <td>1</td>\n <td>0</td>\n <td>0</td>\n <td>1</td>\n <td>1</td>\n <td>1</td>\n <td>1</td>\n <td>0</td>\n <td>0</td>\n <td>4</td>\n <td>0</td>\n <td>0</td>\n <td>1</td>\n <td>1</td>\n </tr>\n <tr>\n <th>1</th>\n <td>antelope</td>\n <td>1</td>\n <td>0</td>\n <td>0</td>\n <td>1</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>1</td>\n <td>1</td>\n <td>1</td>\n <td>0</td>\n <td>0</td>\n <td>4</td>\n <td>1</td>\n <td>0</td>\n <td>1</td>\n <td>1</td>\n </tr>\n <tr>\n <th>2</th>\n <td>bass</td>\n <td>0</td>\n <td>0</td>\n <td>1</td>\n <td>0</td>\n <td>0</td>\n <td>1</td>\n <td>1</td>\n <td>1</td>\n <td>1</td>\n <td>0</td>\n <td>0</td>\n <td>1</td>\n <td>0</td>\n <td>1</td>\n <td>0</td>\n <td>0</td>\n <td>4</td>\n </tr>\n <tr>\n <th>3</th>\n <td>bear</td>\n <td>1</td>\n <td>0</td>\n <td>0</td>\n <td>1</td>\n <td>0</td>\n <td>0</td>\n <td>1</td>\n <td>1</td>\n <td>1</td>\n <td>1</td>\n <td>0</td>\n <td>0</td>\n <td>4</td>\n <td>0</td>\n <td>0</td>\n <td>1</td>\n <td>1</td>\n </tr>\n <tr>\n <th>4</th>\n <td>boar</td>\n <td>1</td>\n <td>0</td>\n <td>0</td>\n <td>1</td>\n <td>0</td>\n <td>0</td>\n <td>1</td>\n <td>1</td>\n <td>1</td>\n <td>1</td>\n <td>0</td>\n <td>0</td>\n <td>4</td>\n <td>1</td>\n <td>0</td>\n <td>1</td>\n <td>1</td>\n </tr>\n </tbody>\n</table>\n</div>" | |
}, | |
"metadata": {} | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "zoo.shape", | |
"execution_count": 3, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"execution_count": 3, | |
"data": { | |
"text/plain": "(101, 18)" | |
}, | |
"metadata": {} | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "array = zoo.values", | |
"execution_count": 4, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "x = zoo.iloc[:,1:17]\ny = zoo.iloc[:,17]", | |
"execution_count": 5, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "n_neighbors = np.array(range(1,40))\nparam_grid = dict(n_neighbors=n_neighbors)", | |
"execution_count": 6, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"trusted": true, | |
"scrolled": false | |
}, | |
"cell_type": "code", | |
"source": "model = KNeighborsClassifier()\nmodel.fit(x, y)", | |
"execution_count": 7, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"execution_count": 7, | |
"data": { | |
"text/plain": "KNeighborsClassifier()" | |
}, | |
"metadata": {} | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "import matplotlib.pyplot as plt \n%matplotlib inline\n\nk_range = range(1, 41)\nk_scores = []\n\nfor k in k_range:\n knn = KNeighborsClassifier(n_neighbors=k)\n scores = cross_val_score(knn, x, y, cv=5)\n k_scores.append(scores.mean())\n\nplt.plot(k_range, k_scores)\nplt.xlabel('Value of K for KNN')\nplt.ylabel('Cross-Validated Accuracy')\nplt.show()\n\nprint(\"Best accuracy is {} with K = {}\".format(np.max(k_scores),1+k_scores.index(np.max(k_scores))))", | |
"execution_count": 8, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": "<Figure size 432x288 with 1 Axes>", | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEGCAYAAAB/+QKOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAu+ElEQVR4nO3deXxV1bn/8c83A/MMYU4YFEVmMOCAsxUQB9RWBe3kbYv8Klbbq9Xq7WDtYK+zdSrawXoraKsoVgs4gkMVEhnDLDIr84wMIc/vj7NjT9Nzkp3AyT5JnvfrdV7J3nutvR/2i+TJXmvttWRmOOecc2VlRB2Ac8659OQJwjnnXEKeIJxzziXkCcI551xCniCcc84llBV1AEdTmzZtrGvXrlGH4ZxzNUZhYeEWM8tJdKxWJYiuXbtSUFAQdRjOOVdjSFqd7Jg3MTnnnEvIE4RzzrmEPEE455xLyBOEc865hDxBOOecS8gThHPOuYQ8QTjnnEuozieI/YcO87sZH/Peii1Rh+Kcc2mlzieI7MwMnnhnJc/MWhN1KM45l1bqfILIzBDn9WrH20s2sf/Q4ajDcc65tJHSBCFphKSlklZIujXB8ZaSJkuaL2mWpD5xx1ZJWiBprqSUzp8xrHd79h48zPsfezOTc86VSlmCkJQJPAKcD/QCxkjqVabYbcBcM+sHfB14sMzxs81sgJnlpypOgFOPaU2T+llMW7gxlZdxzrkaJZVPEEOAFWa20swOApOAUWXK9ALeADCzJUBXSe1SGFNC9bMyObtnW15fvJHDJb5Gt3POQWoTRCdgbdz2umBfvHnAZQCShgBdgM7BMQOmSyqUNDbZRSSNlVQgqWDz5s1VDnZ473Zs3XuQwtXbq3wO55yrTVKZIJRgX9k/z+8CWkqaC1wPzAGKg2NDzWwQsSaq6ySdkegiZjbBzPLNLD8nJ+GU5qGcdXxb6mVmMK3osyqfwznnapNUJoh1QG7cdmdgQ3wBM9tlZteY2QBifRA5wCfBsQ3B103AZGJNVinTpH4WQ49tzbSizzDzZibnnEtlgpgN9JDUTVI9YDQwJb6ApBbBMYBvAzPNbJekxpKaBmUaA8OAhSmMFYDhvduzbvvnLPp0V6ov5ZxzaS9lCcLMioHxwDRgMfCcmRVJGidpXFDsBKBI0hJiTUk3BPvbAe9KmgfMAl4xs6mpirXUl3q1I0MwrchHMznnXEqXHDWzV4FXy+x7PO77fwI9EtRbCfRPZWyJtGlSn/wurZhe9Bk/OO+46r68c86llTr/JnVZw3q3Y8lnu1m9dW/UoTjnXKQ8QZQxvHd7AB/N5Jyr8zxBlJHbqhG9OjRjuvdDOOfqOE8QCQzr3Y7CNdvZvPtA1KE451xkPEEkMLx3e8zgtUX+FOGcq7s8QSTQs31T8lo18n4I51yd5gkiAUkM792O9z/ewq79h6IOxznnIuEJIonhvdtz6LDx1pJNUYfinHOR8ASRxKC8lrRpUr/c0Uxmxotz1jP2zwVs2rW/GqNzzrnUS+mb1DVZRrAU6ZS569l/6DANsjP/7fi67fu4ffJCZiyLTTG+Y98h/vKdk8jO9JzrnKsd/LdZOYb3bvcfS5EeLjF+/+4nDLt/JrNXbeNnF/Xi/iv7M2vVNu76x5IIo3XOuaPLnyDKcUrcUqTn9GzH4k93cevz85m3bidnH5/DLy7tS6cWDQGYt3Ynv3/3EwbktuCi/h0jjtw5546cJ4hylC5F+trijbSZtoTfzVhJ84bZPDRmIBf164D0rzWRbht5AgvX7+SW5+dzfPumHNeuaYSRO+fckfMmpgoM792ObXsP8shbHzNqQCde/8GZXNy/478lB4B6WRk8cvUgGtXLYtzThT481jlX43mCqMCXTmjHN07pwtPfGsK9V/SnZeN6Scu2a9aAR64ayOpt+7jpuXm+Mp1zrkbzBFGBBtmZ3DGqD6f3CLfe9UndW/Oj83syfdFGHp+xMsXROedc6qQ0QUgaIWmppBWSbk1wvKWkyZLmS5olqU/YuunsW6d148J+Hbh72hLeW7Gl4grOOZeGUpYgJGUCjxBbSrQXMEZSrzLFbgPmmlk/4OvAg5Wom7Yk8Zsv9+OYnCZcP3EOG3Z8HnVIzjlXaal8ghgCrDCzlWZ2EJgEjCpTphfwBoCZLQG6SmoXsm5aa1w/i8e/diIHi0u4fuIc749wztU4qUwQnYC1cdvrgn3x5gGXAUgaAnQBOoesS1BvrKQCSQWbN28+SqEfHcfkNOG/hx1H4ertLN+0J+pwnHOuUlKZIJRgX9k/o+8CWkqaC1wPzAGKQ9aN7TSbYGb5ZpafkxOuI7k6jezbAYBpC33qcOdczZLKBLEOyI3b7gxsiC9gZrvM7BozG0CsDyIH+CRM3ZqiXbMGDMxrwbRFniCcczVLKhPEbKCHpG6S6gGjgSnxBSS1CI4BfBuYaWa7wtStSYb3bs/C9btYt31f1KE451xoKUsQZlYMjAemAYuB58ysSNI4SeOCYicARZKWEBuxdEN5dVMVa6oN790eoNypw51zLt2oNo2uyc/Pt4KCgqjDSGjY/TNo2agez157StShOOfcFyQVmll+omP+JnU1GdarPbNXbWPb3oNRh+Kcc6F4gqgmw3u3p8Tg9cXezOScqxkqTBCS7pHUuzqCqc36dGpGpxYNmV7ko5mcczVDmCeIJcAESR8GHczNUx1UbSTFljCduXwLew8URx2Oc85VqMIEYWZPmtlQYu8pdAXmS3pG0tmpDq62Gd67PQeLS75Yx9o559JZqD6IYPK8nsFnC7EpMn4gaVIKY6t1BndtSctG2d7M5JyrESpcclTSfcDFxCbV+5WZzQoO/UbS0lQGV9tkZWZw7gntmFb0GQeLS6iX5WMEnHPpK8xvqIVAPzO7Ni45lBqSgphqteG927N7fzEfrNwadSjOOVeuMAliO5BduhFMj3EJgJntTFFctdbpPdrQqF4m07yZyTmX5sIkiJ/GJwIz2wH8NGUR1XINsjM587gcXlu0kZKS2vMWu3Ou9gmTIBKVqbDvwiU3vHd7Nu0+wJy1O6IOxTnnkgqTIAok3SfpGEndJd0PFKY6sNrs7J5tycoQ030KcOdcGguTIK4HDgLPAn8F9gPXpTKo2q55w2xOOaY104s2+lKkzrm0FeZFub1mdmuwatuJZvYjM9tbHcHVZsN6t+eTLXt9KVLnXNoKMxdTjqS7Jb0q6c3ST3UEV5sN69UO8KVInXPpK0wT01+IzcfUDbgDWEVsxTd3BHwpUudcuguTIFqb2e+BQ2Y2w8z+Czg5zMkljZC0VNIKSbcmON5c0suS5kkqknRN3LFVkhZImispPVcBOkK+FKlzLp2FSRCHgq+fSrpA0kCgc0WVgvmbHiG2lGgvYIykXmWKXQcsMrP+wFnAvXFrVAOcbWYDkq12VNOVLkX60twNbNq1P+Fn8+4D3pHtnItEmPcZfhFM8f3fwG+BZsD3Q9QbAqwws5UAwcR+o4BFcWUMaCpJQBNgG1Bn5sLu1qYxx7Vrwt3TlnL3tOTTWl02qBP3Xt6f2G1yzrnqUW6CCJ4CepjZ34GdQGWm+O4ErI3bXgecVKbMw8AUYAPQFLjSzEqCYwZMl2TA78xsQpIYxwJjAfLy8ioRXnp4+KpBzF61LenxRRt28ZcP19CzfVPGnnFMNUbmnKvryk0QZnZY0sXA/VU4d6I/d8u2lQwH5gLnAMcAr0l6x8x2AUPNbIOktsH+JWY2M0GME4AJAPn5+TWuLea4dk05rl3TpMfNjO37DnLXP5ZwQodmnN4jpxqjc87VZWH6IN6X9LCk0yUNKv2EqLcOyI3b7kzsSSHeNcALFrMC+ITYmhOY2Ybg6yZgMnV05lhJ3P2V/vRo25TrJ85hzVbv0HbOVY8wCeJUoDfwc+De4HNPiHqzgR6SugUdz6OJNSfFWwOcCyCpHXA8sFJSY0lNg/2NgWHEph2vkxrXz2LC10+kpMQY+3QB+w7WmW4a51yEKuykNrMqLS1qZsWSxgPTgEzgD2ZWJGlccPxx4E7gT5IWEGuSusXMtkjqDkwOOmWzgGfMbGpV4qgturRuzENjBnLNn2Zz89/m8/CYgd5p7ZxLKVU0hFLSTxLtN7OfpySiI5Cfn28FBbXylYkvPPb2x/xm6hJuPb8n4870Tmvn3JGRVJjsVYIwTUx74z6Hib3X0PWoRecqZdyZ3bmgXwf+d+oSZi7bHHU4zrlaLEwT073x25Lu4T/7Elw1iXVa9+PjTXu4fuIcpowfSpfWjaMOyzlXC4V5giirEdD9aAfiwmtUL4sJX4s9EV77dCF7D3intXPu6Aszm+sCSfODTxGwFHgw9aG58uS1bsRvxwxkyWe7eeqfq6IOxzlXC4WZauPCuO+LgY1m5n+ypoEzjsthSLdWPDt7LePOOIaMDB/V5Jw7esI0MXUAtpnZajNbDzSQVHbKDBeRMUNyWb11Hx+s3Bp1KM65WiZMgngMiF/2bF+wz6WB8/t0oHnDbJ6ZtSbqUJxztUyYBCGLe1kimEwvTNOUqwYNsjO5dGAnphdtZNveg1GH45yrRcIkiJWSvicpO/jcAKxMdWAuvDFD8jh4uIQXPloXdSjOuVokTIIYR2w+pvX8a8rusakMylXO8e2bMiivBc/MWuOLCznnjpoKE4SZbTKz0WbW1szamdlVwQyrLo2MHpLHys17mb1qe9ShOOdqiTDvQTwlqUXcdktJf0hpVK7SLuzXgab1s5jkndXOuaMkTBNTPzPbUbphZtuBgSmLyFVJo3pZjBrYkVcWfMrOfYcqruCccxUIkyAyJLUs3ZDUCh/FlJZGD87jQHEJk+d4Z7Vz7siFSRD3EltV7k5JdwLvA3enNixXFX06Nadvp+ZMmr3WO6udc0csTCf1n4EvAxuBTcBlwT6XhsYMyWPJZ7uZu3ZH1KE452q4ULO5mtkiM3sYeBW4TFKo5T8ljZC0VNIKSbcmON5c0suS5kkqknRN2LousYsHdKRRvUwmeme1c+4IhRnF1EHSjZJmAUXElg8dE6JeJvAIsQWGegFjJPUqU+w6YJGZ9QfOAu6VVC9kXZdAk/pZXNy/Iy/P+5Td+72z2jlXdUkThKTvSHoTmAG0Ab4NfGpmd5jZghDnHgKsMLOVZnYQmASMKlPGgKaKLa7cBNhGbMbYMHVdEqOH5PH5ocNMmbch6lCcczVYeU8QjxB7WrjKzP7HzOYT+4UeVidgbdz2umBfvIeBE4ANwALghmCupzB1AZA0VlKBpILNm30JToD+nZvTs31Tb2Zyzh2R8hJER2J/ud8X9AXcCWRX4tyJFicom2CGA3ODaw0AHpbULGTd2E6zCWaWb2b5OTk5lQiv9pLEVSflsXD9Lhau3xl1OM65GippgjCzLWb2mJmdAZwL7AQ2SVos6Vchzr0OyI3b7kzsSSHeNcALFrMC+AToGbKuK8eoAZ1okJ3hTxHOuSoLO4ppnZndY2YnApcAB0JUmw30kNRNUj1gNDClTJk1xJIPktoBxxObKTZMXVeO5g2zGdm3Ay/N3cCarfuiDsc5VwOFShDxzGypmd0RolwxMB6YBiwGnjOzIknjJI0Lit0JnCppAfAGcEvw5JKwbmVjreu+fVp3AIY9MIMJMz+m+HBJxBE552oS1aY3bvPz862goCDqMNLKpzs/58cvFvH64o306dSMuy7rR59OzaMOyzmXJiQVmll+omOVfoJwNUuH5g154usn8ujVg/hs5wFGPfIev/7HYj4/eDjq0JxzaS7ppHuSBpVX0cw+OvrhuFSQxMi+HRh6TBt+9epifjdjJVMXfsavL+3Lqce2iTo851yaStrEJOmt4NsGQD4wj9jw037Ah2Z2WrVEWAnexBTO+x9v4bYXFrBq6z6uyO/MbSNPoEWjelGHlTY27trPA68vZ++B4qRlurRuxA3n9iAr0x/CXc1WXhNT0icIMzs7qDwJGFv69rSkPsBNqQjUVY9Tj2nD1BvP4ME3ljNh5kreXLKJn13cmwv6diD2UnvddaD4MNc+XciiT3fRqUXDhGVKzJgybwOHDhu3nt+zmiN0rvqEWdehZ/zUGma2UNKA1IXkqkOD7ExuGdGTC/t14NbnFzD+mTlM7rmeOy/pQ8ckvxjrgl/8fTFz1+7g0asHMbJvh6Tlbpu8gMdnfMyA3OaM6JO8nHM1WZjn48WSnpR0lqQzJT1BbOipqwV6d2zO5O+eyv9ccALvf7yV8+6bwZ//uYqSktozui2s5wvX8fQHq7n2jO7lJgeAn17Ui/65Lbjpr/P5ePOeaorQueoVJkFcQ2wW1xuAG4FFwT5XS2RlZvDt07sz/ftnMKhLS37yUhFfefx9lm3cHXVo1aZow05um7yAk7u34ubhx1dYvn5WJo9dPYh6WRmMe7qw3P4K52qqUO9BSGoI5JnZ0tSHVHXeSX3kzIwX567n5y8vYs+BYs4+vi3ZWVXriM3KEFcOzuXUY9J7pNTOfYe48OF3OFRsvHz9aeQ0rR+67nsrtvC133/I+X078PCYgXW+D8fVPFXqpI6rfDGxJUbrAd2C/oefm9nFRzVKlxYkcenAzpzRI4e7/rGEj9Zsr/K5duw7xEtzN3BFfmduH9mL5o0qM9dj9SgpMW58dg6f7dzPs9eeUqnkADD02DbcPLwnv5m6hIG5Lfj26d1TFKlz1S9MJ/VPia3P8DaAmc2V1DWFMbk00LpJfe6+vP8RnWP/ocNxI6U287OLe6XdSKmH3lzOW0s3c+clfRiU17JK5xh3Znfmrt3Or/+xhD6dmnNy99ZHOUrnohGm7aDYzHzOaFdppSOlpowfSofmDRj/zBy+8+cCNuz4POrQAHhrySYefGM5lw3qxFdPyqvyeSRx9+X96dKqEeOf+YjPdu4/ilE6F50wCWKhpKuATEk9JP0WeD/FcblapHSk1O0jT+DdFVvSYqTUmq37uGHSHHq2b8YvL+l7xE81zRpk8/jXTmTfwcNc98xHHCz2iRFdzVdhJ7WkRsDtwLBg1zTgTjMLM+V3tfJO6vS3Zus+bn9xAe8s30KvDs3o0rpRJHEUbdjFjn0Hefn60+jSuvFRO+/L8zZw/cQ5XDaoE7+8pC8N62UetXM7lwrldVKHSRCXm9lfK9qXDjxB1AxmxgsfreeP738S2V/a9bIyuHXECZzW4+iPsLpv+lIeenMFea0a8atL+6bkGs4dLUeaID4ys0EV7UsHniBcuvjnx1u5bfICPtmyl6+c2JnbR55Ay8Y+35VLP1Ua5irpfGAk0EnSQ3GHmgH+VpBz5TjlmNb844bTeSgYxfX20k385KLeXNQvvUZxOVee8jqpNwAFwH6gMO4zBRge5uSSRkhaKmmFpFsTHL9Z0tzgs1DSYUmtgmOrJC0IjvljgatxGmRn8sMRPZky/jQ6tmjI9ybO4VtPFbA+TUZxOVeRME1M2WZ2qNInljKBZcB5wDpi60yPMbNFScpfBHzfzM4JtlcB+Wa2Jew1vYnJpavDJcYf3/uEe6cvI0Nw7xUDGNGnfdRhOXfEK8p1lfQ3SYskrSz9hKg3BFhhZivN7CAwCRhVTvkxwMQQ53WuxsnM0BfzXXVt05jbJy9gj8/f5NJcmATxR+AxYv0OZwN/Bp4OUa8TsDZue12w7z8EQ2lHAM/H7TZguqRCSWOTXUTSWEkFkgo2b94cIiznopPbqhG/vLQvW/ce5ImZYf7Oci46YRJEQzN7g1hz1Goz+xlwToh6iXrikrVnXQS8Z2bb4vYNDUZKnQ9cJ+mMRBXNbIKZ5ZtZfk5OToiwnIvWgNwWjOzbniffWcnm3Wn3OpFzXwiTIPZLygCWSxov6VKgbYh664DcuO3OxDq+ExlNmeYlM9sQfN0ETCbWZOVcrXDTsOPZX1zCw28ujzoU55IKkyBuBBoB3wNOBL4GfCNEvdlAD0ndJNUjlgSmlC0kqTlwJvBS3L7GkpqWfk/sLe6FIa7pXI3QPacJVw7O5S8frmH11r1Rh+NcQhUmCDObbWZ7zGydmV1jZpeZ2Qch6hUD44lNzbEYeM7MiiSNkzQuruilwHQzi/8paQe8K2keMAt4xcymVuYf5ly6u/HcHmRnZnDP9GVRh+JcQkmHuUp6meR9BqTjehA+zNXVNPdMW8rDb63g5fGn0bdz86jDcXVQVYe53gPcC3wCfA48EXz24M09zh0VY8/sTstG2fxm6pKoQ3HuPyRNEGY2w8xmAAPN7Eozezn4XAWcVn0hOld7NWuQzfhzevDuii28s9yHabv0EqaTOkfSF+soSuoG+HhS546Sr56cR6cWDfnN1CWRrpHhXFlhEsT3gbclvS3pbeAtYiObnHNHQf2sTP572HEsXL+Lvy/4NOpwnPtCmFFMU4EewA3B53gzm5bqwJyrS0YN6ETP9k25Z9pSX43OpY2kCUJS6aR5lwEXAMcEnwuCfc65oyQzQ9xyfk/WbNvHxFlrog7HOaCc9SCIvbz2JrFpMMoy4IWURORcHXXWcTmc3L0VD72xnC+f2Jkm9cv78XQu9Sqc7rsm8fcgXE03d+0OLnnkPa4+KY9fXto36nBcHVDVFeV+UN5Jzey+Iw3MOffvBuS24NozuvO7mSsZlNeSL5/YOeqQXB1W3jNs02qLwjn3hZuHH8+8dTu4bfICenZoSu+O/oa1i4Y3MTmXhjbvPsBFv32X7Czx9/Gn07xRdtQhuVrqiFaUk9RA0nWSHpX0h9LP0Q/TOVcqp2l9Hv3qID7buZ8bn53jL9C5SIR5Ue5poD0wHJhBbF2H3akMyjkHg/Ja8pOLevPW0s085OtGuAiESRDHmtmPgb1m9hSxdyJ8eIVz1eCrJ+Vx2aBOPPjGct5asinqcFwdEyZBHAq+7pDUB2gOdE1ZRM65L0jil5f0pWf7ZtwwaQ5rtu6LOiRXh4RJEBMktQR+TGxFuEXAb1IalXPuCw3rZfL4VwcBMO7/Ctl/6HDEEbm6orz3IBYBfwEmmdl2Yv0P3ZOVT3KOEcCDQCbwpJndVeb4zcDVcbGcAOSY2baK6jpXl3Rp3ZgHRg/gv/5UwK3Pz+ebQ7slLdu6cT1yWzWq0nU27z7A+h2fJz2eKdGzQ1OyM8P8belquvJWlOtPbB3pK4AtwETgWTMLNd2kpExgGXAesI7YGtVjzGxRkvIXAd83s3MqW7eUD3N1td39ry3jwTfK77CW4Gsnd+Hm4cfTtEG44bHFh0t48t1PeOD1Zew/VP5kgT3bN+WuL/djQG6LsGG7NFalN6nNbB4wD/iRpJOBK4EPJa0AJprZExVcdwiwwsxWBkFMAkYRa6JKZAyxJFSVus7VCTd+qQen9WjDnv3FScvMWLaZp/65itcWbeQXl/Th3BPalXvOhet3csvz8ynasIthvdpx5eBcMqSEZbfsOcB9ry3j0kff45unduWmYcfT2OeMqrUq9aKcpLOA+4FeZla/grJfAUaY2beD7a8BJ5nZ+ARlGxF7Ujg2aF6qTN2xwFiAvLy8E1evXh363+NcbTVnzXZufX4BSzfu5oJ+HfjZRb3JafrvP7KfHzzM/a8v4/fvfkKrxvW4c1RvRvTpUOG5d+8/xN3TlvL0B6vp2Lwhv7i0D2cf3zZV/xSXYkf6otxgSfdJWg3cAUwAOoW5boJ9ybLRRcB7ZratsnXNbIKZ5ZtZfk6OL3TnHMDAvJa8fP1p3DTsOF4r2siX7pvBcwVrKf2D8N3lWxj+wEwmzFzJFfm5vP6DM0MlB4CmDbL5+ag+/G3cKTSsl8k1f5zNDZPmsHXPgVT+k1wEyuuk/hWxZqXtwCRgqJmtq8S51wG5cdudgQ1Jyo7mX81Lla3rnEugXlYG48/pwfl9O/CjFxbww7/N58U562nfvAEvfLSe7m0aM2nsyZzcvXWVzn9il1a88r3TeOztj3nkrRXMXLaZH1/Yi8sG+QSDtUV5ndQ/JdbXsCxu34Vm9vdQJ5ayiHU0nwusJ9bRfJWZFZUp1xz4BMg1s72VqVuWd1I7l1hJiTFp9lp+/epiPj90mHFnHsP4c46lQXbmUTn/8o27ueX5+Xy0Zgd/vGawNznVIOU1MVW2D+IjMxtUifIjgQeIDVX9g5n9UtI4ADN7PCjzTWL9DaMrqlvR9TxBOFe+LXsOsPdAMV1aNz7q5z50uIRTfv0mA/Na8MTXE/6+cWmoSqOYkp2rMoXN7FXg1TL7Hi+z/SfgT2HqOueOTJsm9WnTpNzxJVWWnZnBV07szBPvrGTTrv20bdYgJddx1aeyb7tcm5IonHO1wpWDczlcYvzto8p0V7p0FWYU0+WSShcPGi7pBUmhm5mcc3VHtzaNObl7K56d/a8RU67mCvME8WMz2y3pNGJvNj8FPJbasJxzNdXowXms3rqPD1Zuq7iwS2thEkTpzGAXAI+b2UtAvdSF5JyryUb0aU+zBlk8O3tN1KG4IxQmQayX9DticzK9Kql+yHrOuTqoQXYmlw7sxKsLP2PHvoNRh+OOQJhf9FcA04gNRd0BtAJuTmVQzrma7crBeRwsLuHFOeujDsUdgTAJogPwipktD+ZiuhyYlcqgnHM1W6+OzejXuTmTvLO6RguTIJ4HDks6Fvg90A14JqVROedqvCsH57Lks93MX7cz6lBcFYVJECVmVgxcBjxgZt8n9lThnHNJXdy/Iw2zM5k0e23UobgqCrUmtaQxwNeB0nmYwq1C4pyrs5o2yOaCfh2YMnc9ew8kX7/Cpa8wCeIa4BTgl2b2iaRuwP+lNiznXG0wZkguew8e5pUFoRaidGmmwgQRLPN5E7BAUh9gna8P7ZwLY1BeS45t24RnvZmpRgoz1cZZwHLgEeBRYJmkM1IblnOuNpDE6MG5FK7ezrKNu6MOx1VSmCame4FhZnammZ0BDCe27KhzzlXo0oGdyM6UP0XUQGESRLaZLS3dCBYQ8k5q51worZvUZ1iv9rzw0ToOFB+uuIJLG2ESRKGk30s6K/g8ARSmOjDnXO1x5eBctu87xGuLNkYdiquEMAliHFAEfA+4AVgU7KuQpBGSlkpaIenWJGXOkjRXUpGkGXH7V0laEBzzZeKcq8FOO7YNnVo09GamGqbcFeUkZQCFZtYHuK8yJ5aUSaxj+zxgHTBb0pRgVFRpmRbEOr5HmNkaSWUXsj3bzLZU5rrOufSTkSGuyM/l/teXsXbbPnJbNYo6JBdCuU8QZlYCzJOUV4VzDwFWmNlKMzsITAJGlSlzFfCCma0JrrepCtdxztUAl+d3RoK/FvhTRE0RdrK+IklvSJpS+glRrxMQ/z9hXbAv3nFAS0lvSyqU9PW4YwZMD/aPTXYRSWMlFUgq2Lx5c4iwnHNR6NiiIWcel8NzBes4XOIT+NUE5TYxBe6o4rmVYF/Z/xVZwInAuUBD4J+SPghGSg01sw1Bs9NrkpaY2cz/OKHZBGACQH5+vv+vcy6NjR6cx7j/K2TGsk2c07Nd1OG4CiRNEMHsre3MbEaZ/WcAYSZ5Xwfkxm13BjYkKLPFzPYCeyXNBPoDy8xsA8SanSRNJtZk9R8JwjlXc5x7QlvaNKnHpFlrPUHUAOU1MT0AJHr1cV9wrCKzgR6SukmqB4wGyjZNvQScLilLUiPgJGCxpMaSmgJIagwMAxaGuKZzLo1lZ2bw5RM788aSTWzavT/qcFwFyksQXc1sftmdZlYAdK3oxMEU4eOJrUa3GHjOzIokjZM0LiizGJgKzCe2CNGTZrYQaAe8K2lesP8VM5taqX+Zcy4tXZmfy+ES4/lCX20u3SnZak+SVpjZsZU9FqX8/HwrKPBXJpxLd1f87p9s2rWft246CylRd6WrLpIKzSw/0bHyniBmS/pOgpN9C3+T2jl3BEYPzmXV1n18+Mm2qENx5SgvQdwIXBMMQb03+MwAvk3sjWrnnKuS8/t0oGmDLH+zOs0lTRBmttHMTiU2zHVV8LnDzE4xs8+qJzznXG3UsF4mlwzoxKsLPmXnvkNRh+OSCLNg0Ftm9tvg82Z1BOWcq/2uHJzLgeISXpzrndXpKsyb1M45d9T16dScPp2aMXHWGpINlnHR8gThnIvMlYPzWPLZbhas3xl1KC4BTxDOuciMGtCRBtkZTPLO6rTkCcI5F5lmDbK5oG9HpszdwL6DxVGH48rwBOGci9ToIbnsOVDMK/M/jToUV4YnCOdcpPK7tKR7TmN/JyINeYJwzkVKEqMH51KwejvLNyaaH9RFxROEcy5ylw3qTFaG/CkizXiCcM5Frk2T+pzXqx3Pf7SOA8WHow7HBTxBOOfSwpgheWzfd4hpRRujDsUFPEE459LCace2IbdVQ575cHXUobiAJwjnXFrIyBCjB+fxwcptrNy8J+pwHClOEJJGSFoqaYWkW5OUOUvSXElFwXTioes652qXy/NjndUTZ62JOhRHChOEpEzgEeB8oBcwRlKvMmVaAI8CF5tZb+DysHWdc7VP26YNOK9XO/5W6J3V6SCVTxBDgBVmttLMDgKTgFFlylwFvGBmawDMbFMl6jrnaqGrTop1Vk9d6MvORC2VCaITED+oeV2wL95xQMtg1bpCSV+vRF0AJI2VVCCpYPPmzUcpdOdcVIYe04a8Vo145kNvZopaKhNEopXIy076ngWcCFwADAd+LOm4kHVjO80mmFm+meXn5OQcSbzOuTSQkSFGD8nlw0+28bF3VkcqlQliHZAbt90Z2JCgzFQz22tmW4CZQP+QdZ1ztdRXTgw6q/0pIlKpTBCzgR6SukmqB4wGppQp8xJwuqQsSY2Ak4DFIes652qptk0bMKx37M3q/Ye8szoqKUsQZlYMjAemEful/5yZFUkaJ2lcUGYxMBWYD8wCnjSzhcnqpipW51z6+deb1d5ZHRXVprVg8/PzraCgIOownHNHQUmJcdY9b9OheQOevfaUqMOptSQVmll+omP+JrVzLi3Fd1av2OSd1VHwBOGcS1uXn5hLVoaY5G9WR8IThHMubeU0rc/w3u35m3dWR8IThHMurY0ZkscO76yOhCcI51xaO/WY1nRp3Yi/+DsR1c4ThHMurZVOAz7LO6urXVbUATjnXEUuz+/Mfa8t5eonP6BFw3pRh1PtmjfK5qZhxzOkW6tqva4nCOdc2mvTpD63jzyBD1ZuizqUSCxYv5MrfvdPrj4pj1vO70mzBtnVcl1/Uc4559LcvoPF3Dd9GX947xNymtbn56P6MLx3+6Nybn9RzjnnarBG9bL4nwt7Mfm7Q2nVuD7XPl3IuKcL2bhrf0qv6wnCOedqiP65LZgyfig/HHE8by7dxJfum8HEWWsoKUlNS5AnCOecq0GyMzP47lnHMu3GM+jdsRk/emEBo5/4gH0Hi4/6tbyT2jnnaqBubRoz8Tsn81zBWj5avYNG9Y7+r3NPEM45V0NJ4srBeVw5OC8l5/cmJueccwl5gnDOOZdQShOEpBGSlkpaIenWBMfPkrRT0tzg85O4Y6skLQj2+8sNzjlXzVLWByEpE3gEOA9YB8yWNMXMFpUp+o6ZXZjkNGeb2ZZUxeiccy65VD5BDAFWmNlKMzsITAJGpfB6zjnnjqJUJohOwNq47XXBvrJOkTRP0j8k9Y7bb8B0SYWSxia7iKSxkgokFWzevPnoRO6ccy6lw1yVYF/Z1/0+ArqY2R5JI4EXgR7BsaFmtkFSW+A1SUvMbOZ/nNBsAjABYnMxHbXonXOujkvlE8Q6IDduuzOwIb6Ame0ysz3B968C2ZLaBNsbgq+bgMnEmqycc85Vk1Q+QcwGekjqBqwHRgNXxReQ1B7YaGYmaQixhLVVUmMgw8x2B98PA35e0QULCwu3SFqd5HAbIF07vD22qvHYqsZjq5raGluXZAdSliDMrFjSeGAakAn8wcyKJI0Ljj8OfAX4f5KKgc+B0UGyaAdMllQa4zNmNjXENXOSHZNUkGxK26h5bFXjsVWNx1Y1dTG2lE61ETQbvVpm3+Nx3z8MPJyg3kqgfypjc845Vz5/k9o551xCdSlBTIg6gHJ4bFXjsVWNx1Y1dS62WrXkqHPOuaOnLj1BOOecqwRPEM455xKq9Qmiohllo5ZOs9ZK+oOkTZIWxu1rJek1ScuDry3TKLafSVofNxvwyAjiypX0lqTFkook3RDsj/y+lRNbOty3BpJmBdPsFEm6I9ifDvctWWyR37e4GDMlzZH092A7JfetVvdBBDPKLiNuRllgTIIZZSMjaRWQnw6z1ko6A9gD/NnM+gT7/hfYZmZ3BQm2pZndkiax/QzYY2b3VHc8cXF1ADqY2UeSmgKFwCXAN4n4vpUT2xVEf98ENA6m2ckG3gVuAC4j+vuWLLYRRHzfSkn6AZAPNDOzC1P1c1rbnyB8RtlKCOa62lZm9yjgqeD7p4j9gql2SWKLnJl9amYfBd/vBhYTm5Qy8vtWTmyRs5g9wWZ28DHS474liy0tSOoMXAA8Gbc7JfettieIsDPKRinUrLURamdmn0LsFw7QNuJ4yhovaX7QBBVJ81cpSV2BgcCHpNl9KxMbpMF9C5pJ5gKbgNfMLG3uW5LYIA3uG/AA8EOgJG5fSu5bbU8QYWaUjdpQMxsEnA9cFzSluHAeA44BBgCfAvdGFYikJsDzwI1mtiuqOBJJEFta3DczO2xmA4hN5DlEUp8o4kgkSWyR3zdJFwKbzKywOq5X2xNEhTPKRq0GzFq7MWjLLm3T3hRxPF8ws43BD3IJ8AQR3bugnfp54C9m9kKwOy3uW6LY0uW+lTKzHcDbxNr40+K+lYqPLU3u21Dg4qDvchJwjqT/I0X3rbYniC9mlJVUj9iMslMijukLkhoHnYfoX7PWLiy/VrWbAnwj+P4bwEsRxvJvSn8gApcSwb0LOjR/Dyw2s/viDkV+35LFlib3LUdSi+D7hsCXgCWkx31LGFs63Dcz+5GZdTazrsR+n71pZl8lVffNzGr1BxhJbCTTx8DtUcdTJrbuwLzgUxR1fMBEYo/Oh4g9fX0LaA28ASwPvrZKo9ieBhYA84MfkA4RxHUasWbL+cDc4DMyHe5bObGlw33rB8wJYlgI/CTYnw73LVlskd+3MnGeBfw9lfetVg9zdc45V3W1vYnJOedcFXmCcM45l5AnCOeccwl5gnDOOZeQJwjnnHMJeYJwNYqktyUNL7PvRkmPVlAnpYvNS5oYTMHw/TL7fybppuD7BsFMmz9NUP9yxWZdfesIYtgT9/3IYGbPvCCGfZLaJilrku6N274pmAjR1XGeIFxNM5HYC0LxRgf7IyGpPXCqmfUzs/uTlKlH7I3mQjO7I0GRbwHfNbOzQ14zq5xj5wK/Jfb275pg9xbgv5NUOQBcJqlNmGu7usMThKtp/gZcKKk+fDEJXUfgXUmPSSpQ3Bz+ZZX5y/krkv4UfJ8j6XlJs4PP0AR1G0j6o2Lrd8yRVPrLfDrQVrE1Ak5PcNksYtMiLDez/1iTRNJPiL3U9riku5NdR9I3Jf1V0svBNRP9+04nNg3EBWb2cdyhPwBXSmqVoFoxsTWNv5/gmKvDPEG4GsXMtgKziM3bA7Gnh2ct9sbn7WaWT+xN2DMl9avEqR8E7jezwcCX+feplEtdF8TQFxgDPCWpAXAx8LGZDTCzdxLU+yFQbGY3Jvk3/RwoAK42s5vLuQ7AKcA3zOycBKeqT2yKhUvMbEmZY3uIJYkbEsUAPAJcLal5kuOuDvIE4Wqi+Gam+OalKyR9RGyahN5Ar0qc80vAw8EUz1OAZqXzZMU5jdh0CwS/gFcDx4U497vAKZLClK3oOq+ZWbJ1MQ4B7xNrrkrkIeAbkpqVPWCxWV7/DHwvZIyuDvAE4WqiF4FzJQ0CGlpsxbRuwE3AuWbWD3gFaJCgbvzcMvHHM4BTgqeAAWbWyWKL7MRLNH18GDOBG4F/SOoYonx519lbzrESYqvFDZZ0W9mDFpuZ9Bngu0nqP0AsuTQOEaOrAzxBuBrHYqt9vU2syaT06aEZsV+eOyW1I7a+RiIbJZ0gKYPYjJylpgPjSzckDUhQdyZwdXD8OCAPWBoy5ueBu4GppTOFluNIrrMPuJBYc1GiJ4n7gGuJ9YuUrbsNeI7kTyCujvEE4WqqiUB/Yp2/mNk8Yk1LRcQSx3tJ6t0K/B14k9jssKW+B+QHQ1UXAeMS1H0UyJS0AHgW+KaZHQgbsJk9DrwATInrU0jkSK+zjVgfzf9IGlXm2BZi647UT1L9XsBHMzkAn83VOedcYv4E4ZxzLiFPEM455xLyBOGccy4hTxDOOecS8gThnHMuIU8QzjnnEvIE4ZxzLqH/D6B2Gc3sQN1WAAAAAElFTkSuQmCC\n" | |
}, | |
"metadata": { | |
"needs_background": "light" | |
} | |
}, | |
{ | |
"output_type": "stream", | |
"text": "Best accuracy is 0.96 with K = 1\n", | |
"name": "stdout" | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "", | |
"execution_count": null, | |
"outputs": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"name": "python3", | |
"display_name": "Python 3", | |
"language": "python" | |
}, | |
"language_info": { | |
"name": "python", | |
"version": "3.8.5", | |
"mimetype": "text/x-python", | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"pygments_lexer": "ipython3", | |
"nbconvert_exporter": "python", | |
"file_extension": ".py" | |
}, | |
"gist": { | |
"id": "", | |
"data": { | |
"description": "Assignment12-zoo.ipynb", | |
"public": true | |
} | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 4 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment