Last active
June 11, 2017 20:29
-
-
Save ProGamerGov/88e087b8d83a7802ad92bc907301a76f to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
-- Original DeepDream code by github.com/jcjohnson | |
-- Simaltaneous DeepDream and style transfer modifications by github.com/ProGamerGov | |
-- The FC layers as content layers feature, and the label file features come from: | |
-- github.com/htoyryla's gist.github.com/htoyryla/806ca4d978f0528114282cd00022ad71 | |
-- Indepdent layer weights from: https://github.com/htoyryla/neural-style/blob/master/neural_style.lua | |
-- Torch model and architecture support from https://github.com/szagoruyko/neural-style/tree/torch | |
-- A script like this one is requires for making Torch models compatible: https://gist.github.com/szagoruyko/8828e09cc4687afd324d | |
-- Matting laplacian code from: github.com/martinbenson/deep-photo-styletransfer/ | |
-- Generate your laplacians with: https://gist.github.com/ProGamerGov/290f26afccc5e013d1a8425ef6a594f2 | |
require 'torch' | |
require 'nn' | |
require 'image' | |
require 'optim' | |
require 'loadcaffe' | |
local cmd = torch.CmdLine() | |
-- Basic options | |
cmd:option('-style_image', 'examples/inputs/seated-nude.jpg', | |
'Style target image') | |
cmd:option('-style_blend_weights', 'nil') | |
cmd:option('-content_image', 'examples/inputs/tubingen.jpg', | |
'Content target image') | |
cmd:option('-image_size', 512, 'Maximum height / width of generated image') | |
cmd:option('-gpu', '0', 'Zero-indexed ID of the GPU to use; for CPU mode set -gpu = -1') | |
cmd:option('-multigpu_strategy', '', 'Index of layers to split the network across GPUs') | |
-- Optimization options | |
cmd:option('-content_weight', 5e0) | |
cmd:option('-style_weight', 1e2) | |
cmd:option('-fc_weight', 5e2) | |
cmd:option('-tv_weight', 1e-3) | |
cmd:option('-num_iterations', 1000) | |
cmd:option('-normalize_gradients', false) | |
cmd:option('-init', 'random', 'random|image') | |
cmd:option('-init_image', '') | |
cmd:option('-optimizer', 'lbfgs', 'lbfgs|adam') | |
cmd:option('-learning_rate', 1e1) | |
cmd:option('-lbfgs_num_correction', 0) | |
-- Output options | |
cmd:option('-print_iter', 50) | |
cmd:option('-save_iter', 100) | |
cmd:option('-output_image', 'out.png') | |
-- Other options | |
cmd:option('-style_scale', 1.0) | |
cmd:option('-original_colors', 0) | |
cmd:option('-pooling', 'max', 'max|avg') | |
cmd:option('-proto_file', 'models/VGG_ILSVRC_19_layers_deploy.prototxt') | |
cmd:option('-model_file', 'models/VGG_ILSVRC_19_layers.caffemodel') | |
cmd:option('-label_file', '') | |
cmd:option('-backend', 'nn', 'nn|cudnn|clnn') | |
cmd:option('-cudnn_autotune', false) | |
cmd:option('-seed', -1) | |
cmd:option('-content_layers', 'relu4_2', 'layers for content') | |
cmd:option('-style_layers', 'relu1_1,relu2_1,relu3_1,relu4_1,relu5_1', 'layers for style') | |
-- Options for DeepDream | |
cmd:option('-deepdream_layers', '') | |
cmd:option('-deepdream_weights', '') | |
cmd:option('-deepdream_layer_weights', 'nil') | |
-- Experimental Feature(s) From github.com/ProGamerGov | |
cmd:option('-time', false) | |
-- Experimental leongatys/NeuralImageSynthesis features | |
cmd:option('-padding', 'default', 'default|reflect|replicate') | |
cmd:option('-l2_weight', 0) | |
-- Experimental Photorealistim Related Parameters | |
cmd:option('-laplacian', '', 'Laplacian generated from your content image') | |
-- Local affine params | |
cmd:option('-lambda', 1e4) | |
cmd:option('-patch', 3) | |
cmd:option('-eps', 1e-7) | |
-- Reconstruct best local affine using joint bilateral smoothing | |
cmd:option('-f_radius', 7) | |
cmd:option('-f_edge', 0.05) | |
cmd:option('-index', 1) | |
cmd:option('-serial', 'affine_outputs') | |
total_time = nil | |
labels = {} | |
local function main(params) | |
if params.time then | |
total_time = torch.Timer() | |
print 'Time Keeping Enabled' | |
end | |
if params.label_file ~= '' then | |
f = io.open(params.label_file) | |
if f then | |
for line in f:lines() do | |
table.insert(labels, line) | |
end | |
end | |
end | |
local dtype, multigpu = setup_gpu(params) | |
local loadcaffe_backend = params.backend | |
if params.backend == 'clnn' then loadcaffe_backend = 'nn' end | |
local cnn | |
local is_caffemodel = params.model_file:find'caffemodel' | |
if is_caffemodel then | |
cnn = loadcaffe.load(params.proto_file, params.model_file, loadcaffe_backend):type(dtype) | |
else | |
cnn = torch.load(params.model_file):type(dtype) | |
if cnn.unpack then cnn = cnn:unpack() end | |
end | |
local content_image = image.load(params.content_image, 3) | |
content_image = image.scale(content_image, params.image_size, 'bilinear') | |
preprocess = is_caffemodel and preprocess_caffe or preprocess_torch | |
deprocess = is_caffemodel and deprocess_caffe or deprocess_torch | |
print(cnn.transform) | |
local content_image_caffe = preprocess(content_image, cnn.transform):float() | |
local style_size = math.ceil(params.style_scale * params.image_size) | |
local style_image_list = params.style_image:split(',') | |
local style_images_caffe = {} | |
for _, img_path in ipairs(style_image_list) do | |
local img = image.load(img_path, 3) | |
img = image.scale(img, style_size, 'bilinear') | |
local img_caffe = preprocess(img, cnn.transform):float() | |
table.insert(style_images_caffe, img_caffe) | |
end | |
local init_image = nil | |
if params.init_image ~= '' then | |
init_image = image.load(params.init_image, 3) | |
local H, W = content_image:size(2), content_image:size(3) | |
init_image = image.scale(init_image, W, H, 'bilinear') | |
init_image = preprocess(init_image, cnn.transform):float() | |
end | |
local CSR | |
local c, h, w | |
if params.laplacian ~= '' then | |
-- load matting laplacian | |
local CSR_fn = params.laplacian | |
print('loading matting laplacian...', CSR_fn) | |
local csvFile = io.open(CSR_fn, 'r') | |
local ROWS = tonumber(csvFile:read()) | |
CSR = torch.Tensor(ROWS, 3) | |
local i = 0 | |
for line in csvFile:lines('*l') do | |
i = i + 1 | |
local l = line:split(',') | |
for key, val in ipairs(l) do | |
CSR[i][key] = val | |
end | |
end | |
csvFile:close() | |
paths.mkdir(tostring(params.serial)) | |
print('Exp serial:', params.serial) | |
c, h, w = content_image:size(1), content_image:size(2), content_image:size(3) | |
require 'libcuda_utils' | |
end | |
-- Handle style blending weights for multiple style inputs | |
local style_blend_weights = nil | |
if params.style_blend_weights == 'nil' then | |
-- Style blending not specified, so use equal weighting | |
style_blend_weights = {} | |
for i = 1, #style_image_list do | |
table.insert(style_blend_weights, 1.0) | |
end | |
else | |
style_blend_weights = params.style_blend_weights:split(',') | |
assert(#style_blend_weights == #style_image_list, | |
'-style_blend_weights and -style_images must have the same number of elements') | |
end | |
-- Normalize the style blending weights so they sum to 1 | |
local style_blend_sum = 0 | |
for i = 1, #style_blend_weights do | |
style_blend_weights[i] = tonumber(style_blend_weights[i]) | |
style_blend_sum = style_blend_sum + style_blend_weights[i] | |
end | |
for i = 1, #style_blend_weights do | |
style_blend_weights[i] = style_blend_weights[i] / style_blend_sum | |
end | |
local content_layers = params.content_layers:split(",") | |
local style_layers = params.style_layers:split(",") | |
local deepdream_layers = params.deepdream_layers:split(",") | |
local deepdream_layer_weights = {} | |
if params.deepdream_layer_weights == 'nil' then | |
for i = 1, #deepdream_layers do | |
--table.insert(deepdream_layer_weights, 1) | |
end | |
else | |
deepdream_layer_weights = params.deepdream_layer_weights:split(',') | |
assert(#deepdream_layer_weights == #deepdream_layers, | |
'-deepdream_layer_weights and -deepdream_layers must have the same number of elements') | |
end | |
-- Set up the network, inserting style and content loss modules | |
local content_losses, style_losses, deepdream_losses = {}, {}, {} | |
local next_content_idx, next_style_idx, next_deepdream_idx = 1, 1, 1 | |
local net = nn.Sequential() | |
if params.tv_weight > 0 then | |
local tv_mod = nn.TVLoss(params.tv_weight):type(dtype) | |
net:add(tv_mod) | |
end | |
if params.l2_weight ~= 0 then | |
local l2_mod = nn.L2Penalty(params.l2_weight):type(dtype) | |
net:add(l2_mod) | |
end | |
for i = 1, #cnn do | |
local layer = cnn:get(i) | |
-- Makes FC Layers usable as content layers. | |
if (torch.type(layer) == "nn.View") then | |
addlayer = nn.SpatialAdaptiveMaxPooling(7,7):type(dtype) | |
net:add(addlayer) | |
end | |
if next_content_idx <= #content_layers or next_style_idx <= #style_layers then | |
--local layer = cnn:get(i) | |
--local name = layer.name | |
local name = is_caffemodel and layer.name or tostring(i) | |
local layer_type = torch.type(layer) | |
-- reflectance padding option from leongatys/NeuralImageSynthesis | |
local is_convolution = (layer_type == 'cudnn.SpatialConvolution' or layer_type == 'nn.SpatialConvolution') | |
if is_convolution and params.padding ~= 'default' then | |
local padW, padH = layer.padW, layer.padH | |
local pad_layer | |
if params.padding == 'reflect' then | |
pad_layer = nn.SpatialReflectionPadding(padW, padW, padH, padH):type(dtype) | |
net:add(pad_layer) | |
elseif params.padding == 'replicate' then | |
pad_layer = nn.SpatialReplicationPadding(padW, padW, padH, padH):type(dtype) | |
net:add(pad_layer) | |
else | |
error('Unknown padding type') | |
end | |
layer.padW = 0 | |
layer.padH = 0 | |
end | |
local is_pooling = (layer_type == 'cudnn.SpatialMaxPooling' or layer_type == 'nn.SpatialMaxPooling') | |
if is_pooling and params.pooling == 'avg' then | |
assert(layer.padW == 0 and layer.padH == 0) | |
local kW, kH = layer.kW, layer.kH | |
local dW, dH = layer.dW, layer.dH | |
local avg_pool_layer = nn.SpatialAveragePooling(kW, kH, dW, dH):type(dtype) | |
local msg = 'Replacing max pooling at layer %d with average pooling' | |
print(string.format(msg, i)) | |
net:add(avg_pool_layer) | |
else | |
if params.label_file ~= '' then | |
if layer_type ~= "nn.Dropout" then | |
layer:type(dtype) | |
net:add(layer) | |
end | |
else | |
net:add(layer) | |
end | |
end | |
if name == content_layers[next_content_idx] then | |
print("Setting up content layer", i, ":", layer.name) | |
local norm = params.normalize_gradients | |
local cweight = params.content_weight | |
if is_caffemodel then | |
local pos, _ = string.find(layer.name, "fc") | |
if pos == 1 then -- this is an fc layer | |
cweight = params.fc_weight | |
end | |
end | |
local loss_module = nn.ContentLoss(cweight, norm):type(dtype) | |
net:add(loss_module) | |
table.insert(content_losses, loss_module) | |
next_content_idx = next_content_idx + 1 | |
end | |
if name == style_layers[next_style_idx] then | |
print("Setting up style layer ", i, ":", layer.name) | |
local norm = params.normalize_gradients | |
local loss_module = nn.StyleLoss(params.style_weight, norm):type(dtype) | |
net:add(loss_module) | |
table.insert(style_losses, loss_module) | |
next_style_idx = next_style_idx + 1 | |
end | |
if name == deepdream_layers[next_deepdream_idx] then | |
print("Setting up Deepdream layer ", i, ":", layer.name) | |
local dweight | |
-- Checks whether multiple DeepDream weights are needed | |
if params.deepdream_layer_weights ~= 'nil' then | |
dweight = deepdream_layer_weights[next_deepdream_idx] | |
else | |
dweight = params.deepdream_weights | |
end | |
if is_caffemodel then | |
local pos, _ = string.find(layer.name, "fc") | |
if pos == 1 then -- this is an fc layer | |
dweight = params.fc_weight | |
end | |
end | |
local loss_module = nn.DeepDreamLoss(dweight):type(dtype) | |
net:add(loss_module) | |
table.insert(deepdream_losses, loss_module) | |
next_deepdream_idx = next_deepdream_idx + 1 | |
end | |
else | |
if params.label_file ~= '' then | |
if layer_type ~= "nn.Dropout" then | |
layer:type(dtype) | |
net:add(layer) | |
end | |
end | |
end | |
end | |
if params.label_file ~= '' then | |
--vgg16 places lacks softmax at the end, so insert one | |
local prob = nn.SoftMax():type(dtype) | |
net:add(prob) | |
end | |
if multigpu then | |
net = setup_multi_gpu(net, params) | |
end | |
net:type(dtype) | |
-- Capture content targets | |
for i = 1, #content_losses do | |
content_losses[i].mode = 'capture' | |
end | |
print 'Capturing content targets' | |
print(net) | |
content_image_caffe = content_image_caffe:type(dtype) | |
net:forward(content_image_caffe:type(dtype)) | |
-- Capture style targets | |
for i = 1, #content_losses do | |
content_losses[i].mode = 'none' | |
end | |
for i = 1, #style_images_caffe do | |
print(string.format('Capturing style target %d', i)) | |
for j = 1, #style_losses do | |
style_losses[j].mode = 'capture' | |
style_losses[j].blend_weight = style_blend_weights[i] | |
end | |
net:forward(style_images_caffe[i]:type(dtype)) | |
end | |
-- Capture deepdream targets | |
if params.deepdream_layers ~= '' then | |
for i = 1, #deepdream_losses do | |
deepdream_losses[i].mode = 'capture' | |
end | |
print 'Capturing deepdream targets' | |
--print(net) | |
end | |
-- Set all loss modules to loss mode | |
for i = 1, #content_losses do | |
content_losses[i].mode = 'loss' | |
end | |
for i = 1, #style_losses do | |
style_losses[i].mode = 'loss' | |
end | |
if params.deepdream_layers ~= '' then | |
for i = 1, #deepdream_losses do | |
deepdream_losses[i].mode = 'loss' | |
end | |
end | |
-- Print Elapsed Time | |
if params.time then | |
elapsed_time = total_time:time().real | |
print(string.format('Setup time: %.2f seconds', elapsed_time)) | |
end | |
-- We don't need the base CNN anymore, so clean it up to save memory. | |
if is_caffemodel then | |
cnn = nil | |
end | |
for i=1, #net.modules do | |
local module = net.modules[i] | |
if torch.type(module) == 'nn.SpatialConvolutionMM' then | |
-- remove these, not used, but uses gpu memory | |
module.gradWeight = nil | |
module.gradBias = nil | |
end | |
end | |
collectgarbage() | |
-- Initialize the image | |
if params.seed >= 0 then | |
torch.manualSeed(params.seed) | |
end | |
local img = nil | |
if params.init == 'random' then | |
img = torch.randn(content_image:size()):float():mul(0.001) | |
elseif params.init == 'image' then | |
if init_image then | |
img = init_image:clone() | |
else | |
img = content_image_caffe:clone() | |
end | |
else | |
error('Invalid init type') | |
end | |
img = img:type(dtype) | |
if params.label_file ~= '' then | |
--try the network with content image to detect features | |
cimg = content_image_caffe:clone():float() | |
cimg = cimg:type(dtype) | |
if f then | |
local p = net:forward(cimg) | |
print("----------- Detected Features --------------") | |
for i=1, #labels do | |
if p[i] > 0.03 then | |
print(string.format("%.4f %s", p[i], labels[i])) | |
end | |
end | |
end | |
end | |
local mean_pixel | |
local meanImage | |
if params.laplcian ~= '' then | |
mean_pixel = torch.CudaTensor({103.939, 116.779, 123.68}) | |
meanImage = mean_pixel:view(3, 1, 1):expandAs(content_image_caffe) | |
end | |
-- Run it through the network once to get the proper size for the gradient | |
-- All the gradients will come from the extra loss modules, so we just pass | |
-- zeros into the top of the net on the backward pass. | |
local y = net:forward(img) | |
local dy = img.new(#y):zero() | |
-- Declaring this here lets us access it in maybe_print | |
local optim_state = nil | |
if params.optimizer == 'lbfgs' then | |
optim_state = { | |
maxIter = params.num_iterations, | |
verbose=true, | |
tolX=-1, | |
tolFun=-1, | |
} | |
if params.lbfgs_num_correction > 0 then | |
optim_state.nCorrection = params.lbfgs_num_correction | |
end | |
elseif params.optimizer == 'adam' then | |
optim_state = { | |
learningRate = params.learning_rate, | |
} | |
else | |
error(string.format('Unrecognized optimizer "%s"', params.optimizer)) | |
end | |
local function maybe_print(t, loss, p) | |
local verbose = (params.print_iter > 0 and t % params.print_iter == 0) | |
if verbose then | |
print(string.format('Iteration %d / %d', t, params.num_iterations)) | |
for i, loss_module in ipairs(content_losses) do | |
print(string.format(' Content %d loss: %f', i, loss_module.loss)) | |
end | |
for i, loss_module in ipairs(style_losses) do | |
print(string.format(' Style %d loss: %f', i, loss_module.loss)) | |
end | |
print(string.format(' Total loss: %f', loss)) | |
-- Print Elapsed Time | |
if params.time then | |
elapsed_time = total_time:time().real | |
print(string.format(' Elapsed time: %.2f seconds', elapsed_time)) | |
end | |
if f then | |
for i=1, #labels do | |
if p[i] > 0.03 then | |
print(string.format("%.4f %s", p[i], labels[i])) | |
end | |
end | |
end | |
end | |
end | |
local function maybe_save(t, img_mean) | |
local should_save = params.save_iter > 0 and t % params.save_iter == 0 | |
should_save = should_save or t == params.num_iterations | |
if should_save then | |
--local disp = deprocess(img:double()) | |
local disp = deprocess(img:double(), img_mean) | |
disp = image.minmax{tensor=disp, min=0, max=1} | |
local filename = build_filename(params.output_image, t) | |
if t == params.num_iterations then | |
filename = params.output_image | |
end | |
-- Maybe perform postprocessing for color-independent style transfer | |
if params.original_colors == 1 then | |
disp = original_colors(content_image, disp) | |
end | |
image.save(filename, disp) | |
end | |
end | |
-- Function to evaluate loss and gradient. We run the net forward and | |
-- backward to get the gradient, and sum up losses from the loss modules. | |
-- optim.lbfgs internally handles iteration and calls this function many | |
-- times, so we manually count the number of iterations to handle printing | |
-- and saving intermediate results. | |
local num_calls = 0 | |
local function feval(x) | |
num_calls = num_calls + 1 | |
local p | |
local grad | |
if params.laplacian ~= '' then | |
local output = torch.add(img, meanImage) | |
local input = torch.add(content_image_caffe, meanImage) | |
net:forward(img) | |
local gradient_VggNetwork = net:updateGradInput(img, dy) | |
local gradient_LocalAffine = MattingLaplacian(output, CSR, h, w):mul(params.lambda) | |
if num_calls % params.save_iter == 0 then | |
local best = SmoothLocalAffine(output, input, params.eps, params.patch, h, w, params.f_radius, params.f_edge) | |
fn = params.serial .. '/best' .. tostring(params.index) .. '_t_' .. tostring(num_calls) .. '.png' | |
image.save(fn, best) | |
end | |
grad = torch.add(gradient_VggNetwork, gradient_LocalAffine) | |
else | |
net:forward(x) | |
grad = net:updateGradInput(x, dy) | |
end | |
if params.label_file ~= '' then | |
p = net:forward(x) | |
end | |
local loss = 0 | |
for _, mod in ipairs(content_losses) do | |
loss = loss + mod.loss | |
end | |
for _, mod in ipairs(style_losses) do | |
loss = loss + mod.loss | |
end | |
if params.deepdream_layers ~= '' then | |
for _, mod in ipairs(deepdream_losses) do | |
loss = loss + mod.loss | |
end | |
end | |
if params.label_file ~= '' then | |
maybe_print(num_calls, loss, p) | |
else | |
maybe_print(num_calls, loss) | |
end | |
if is_caffemodel then | |
maybe_save(num_calls) | |
else | |
maybe_save(num_calls, cnn.transform) | |
end | |
collectgarbage() | |
-- optim.lbfgs expects a vector for gradients | |
return loss, grad:view(grad:nElement()) | |
end | |
-- Run optimization. | |
if params.optimizer == 'lbfgs' then | |
print('Running optimization with L-BFGS') | |
local x, losses = optim.lbfgs(feval, img, optim_state) | |
elseif params.optimizer == 'adam' then | |
print('Running optimization with ADAM') | |
for t = 1, params.num_iterations do | |
local x, losses = optim.adam(feval, img, optim_state) | |
end | |
end | |
end | |
function setup_gpu(params) | |
local multigpu = false | |
if params.gpu:find(',') then | |
multigpu = true | |
params.gpu = params.gpu:split(',') | |
for i = 1, #params.gpu do | |
params.gpu[i] = tonumber(params.gpu[i]) + 1 | |
end | |
else | |
params.gpu = tonumber(params.gpu) + 1 | |
end | |
local dtype = 'torch.FloatTensor' | |
if multigpu or params.gpu > 0 then | |
if params.backend ~= 'clnn' then | |
require 'cutorch' | |
require 'cunn' | |
if multigpu then | |
cutorch.setDevice(params.gpu[1]) | |
else | |
cutorch.setDevice(params.gpu) | |
end | |
dtype = 'torch.CudaTensor' | |
else | |
require 'clnn' | |
require 'cltorch' | |
if multigpu then | |
cltorch.setDevice(params.gpu[1]) | |
else | |
cltorch.setDevice(params.gpu) | |
end | |
dtype = torch.Tensor():cl():type() | |
end | |
else | |
params.backend = 'nn' | |
end | |
if params.backend == 'cudnn' then | |
require 'cudnn' | |
if params.cudnn_autotune then | |
cudnn.benchmark = true | |
end | |
cudnn.SpatialConvolution.accGradParameters = nn.SpatialConvolutionMM.accGradParameters -- ie: nop | |
end | |
return dtype, multigpu | |
end | |
function setup_multi_gpu(net, params) | |
local DEFAULT_STRATEGIES = { | |
[2] = {3}, | |
} | |
local gpu_splits = nil | |
if params.multigpu_strategy == '' then | |
-- Use a default strategy | |
gpu_splits = DEFAULT_STRATEGIES[#params.gpu] | |
-- Offset the default strategy by one if we are using TV | |
if params.tv_weight > 0 then | |
for i = 1, #gpu_splits do gpu_splits[i] = gpu_splits[i] + 1 end | |
end | |
else | |
-- Use the user-specified multigpu strategy | |
gpu_splits = params.multigpu_strategy:split(',') | |
for i = 1, #gpu_splits do | |
gpu_splits[i] = tonumber(gpu_splits[i]) | |
end | |
end | |
assert(gpu_splits ~= nil, 'Must specify -multigpu_strategy') | |
local gpus = params.gpu | |
local cur_chunk = nn.Sequential() | |
local chunks = {} | |
for i = 1, #net do | |
cur_chunk:add(net:get(i)) | |
if i == gpu_splits[1] then | |
table.remove(gpu_splits, 1) | |
table.insert(chunks, cur_chunk) | |
cur_chunk = nn.Sequential() | |
end | |
end | |
table.insert(chunks, cur_chunk) | |
assert(#chunks == #gpus) | |
local new_net = nn.Sequential() | |
for i = 1, #chunks do | |
local out_device = nil | |
if i == #chunks then | |
out_device = gpus[1] | |
end | |
new_net:add(nn.GPU(chunks[i], gpus[i], out_device)) | |
end | |
return new_net | |
end | |
-- Matting Laplacian Related Functions: | |
function MattingLaplacian(output, CSR, h, w) | |
local N, c = CSR:size(1), CSR:size(2) | |
local CSR_rowIdx = torch.CudaIntTensor(N):copy(torch.round(CSR[{{1,-1},1}])) | |
local CSR_colIdx = torch.CudaIntTensor(N):copy(torch.round(CSR[{{1,-1},2}])) | |
local CSR_val = torch.CudaTensor(N):copy(CSR[{{1,-1},3}]) | |
local output01 = torch.div(output, 256.0) | |
local grad = cuda_utils.matting_laplacian(output01, h, w, CSR_rowIdx, CSR_colIdx, CSR_val, N) | |
grad:div(256.0) | |
return grad | |
end | |
function SmoothLocalAffine(output, input, epsilon, patch, h, w, f_r, f_e) | |
local output01 = torch.div(output, 256.0) | |
local input01 = torch.div(input, 256.0) | |
local filter_radius = f_r | |
local sigma1, sigma2 = filter_radius / 3, f_e | |
local best01= cuda_utils.smooth_local_affine(output01, input01, epsilon, patch, h, w, filter_radius, sigma1, sigma2) | |
return best01 | |
end | |
function ErrorMapLocalAffine(output, input, epsilon, patch, h, w) | |
local output01 = torch.div(output, 256.0) | |
local input01 = torch.div(input, 256.0) | |
local err_map, best01, Mt_M, invMt_M = cuda_utils.error_map_local_affine(output01, input01, epsilon, patch, h, w) | |
return err_map, best01 | |
end | |
function build_filename(output_image, iteration) | |
local ext = paths.extname(output_image) | |
local basename = paths.basename(output_image, ext) | |
local directory = paths.dirname(output_image) | |
return string.format('%s/%s_%d.%s',directory, basename, iteration, ext) | |
end | |
-- Preprocess an image before passing it to a Caffe model. | |
-- We need to rescale from [0, 1] to [0, 255], convert from RGB to BGR, | |
-- and subtract the mean pixel. | |
function preprocess_caffe(img) | |
local mean_pixel = torch.DoubleTensor({103.939, 116.779, 123.68}) | |
local perm = torch.LongTensor{3, 2, 1} | |
img = img:index(1, perm):mul(256.0) | |
mean_pixel = mean_pixel:view(3, 1, 1):expandAs(img) | |
img:add(-1, mean_pixel) | |
return img | |
end | |
-- Undo the above preprocessing. | |
function deprocess_caffe(img) | |
local mean_pixel = torch.DoubleTensor({103.939, 116.779, 123.68}) | |
mean_pixel = mean_pixel:view(3, 1, 1):expandAs(img) | |
img = img + mean_pixel | |
local perm = torch.LongTensor{3, 2, 1} | |
img = img:index(1, perm):div(256.0) | |
return img | |
end | |
function preprocess_torch(img, img_mean) | |
local im = img:clone() | |
for i=1,3 do im[i]:add(-img_mean.mean[i]):div(img_mean.std[i]) end | |
return im | |
end | |
function deprocess_torch(img, img_mean) | |
local im = img:clone() | |
for i=1,3 do im[i]:mul(img_mean.std[i]):add(img_mean.mean[i]) end | |
return im | |
end | |
-- Combine the Y channel of the generated image and the UV channels of the | |
-- content image to perform color-independent style transfer. | |
function original_colors(content, generated) | |
local generated_y = image.rgb2yuv(generated)[{{1, 1}}] | |
local content_uv = image.rgb2yuv(content)[{{2, 3}}] | |
return image.yuv2rgb(torch.cat(generated_y, content_uv, 1)) | |
end | |
-- Define an nn Module to compute content loss in-place | |
local ContentLoss, parent = torch.class('nn.ContentLoss', 'nn.Module') | |
function ContentLoss:__init(strength, normalize) | |
parent.__init(self) | |
self.strength = strength | |
self.target = torch.Tensor() | |
self.normalize = normalize or false | |
self.loss = 0 | |
self.crit = nn.MSECriterion() | |
self.mode = 'none' | |
end | |
function ContentLoss:updateOutput(input) | |
if self.mode == 'loss' then | |
self.loss = self.crit:forward(input, self.target) * self.strength | |
elseif self.mode == 'capture' then | |
self.target:resizeAs(input):copy(input) | |
end | |
self.output = input | |
return self.output | |
end | |
function ContentLoss:updateGradInput(input, gradOutput) | |
if self.mode == 'loss' then | |
if input:nElement() == self.target:nElement() then | |
self.gradInput = self.crit:backward(input, self.target) | |
end | |
if self.normalize then | |
self.gradInput:div(torch.norm(self.gradInput, 1) + 1e-8) | |
end | |
self.gradInput:mul(self.strength) | |
self.gradInput:add(gradOutput) | |
else | |
self.gradInput:resizeAs(gradOutput):copy(gradOutput) | |
end | |
return self.gradInput | |
end | |
local Gram, parent = torch.class('nn.GramMatrix', 'nn.Module') | |
function Gram:__init() | |
parent.__init(self) | |
end | |
function Gram:updateOutput(input) | |
assert(input:dim() == 3) | |
local C, H, W = input:size(1), input:size(2), input:size(3) | |
local x_flat = input:view(C, H * W) | |
self.output:resize(C, C) | |
self.output:mm(x_flat, x_flat:t()) | |
return self.output | |
end | |
function Gram:updateGradInput(input, gradOutput) | |
assert(input:dim() == 3 and input:size(1)) | |
local C, H, W = input:size(1), input:size(2), input:size(3) | |
local x_flat = input:view(C, H * W) | |
self.gradInput:resize(C, H * W):mm(gradOutput, x_flat) | |
self.gradInput:addmm(gradOutput:t(), x_flat) | |
self.gradInput = self.gradInput:view(C, H, W) | |
return self.gradInput | |
end | |
-- Define an nn Module to compute style loss in-place | |
local StyleLoss, parent = torch.class('nn.StyleLoss', 'nn.Module') | |
function StyleLoss:__init(strength, normalize) | |
parent.__init(self) | |
self.normalize = normalize or false | |
self.strength = strength | |
self.target = torch.Tensor() | |
self.mode = 'none' | |
self.loss = 0 | |
self.gram = nn.GramMatrix() | |
self.blend_weight = nil | |
self.G = nil | |
self.crit = nn.MSECriterion() | |
end | |
function StyleLoss:updateOutput(input) | |
self.G = self.gram:forward(input) | |
self.G:div(input:nElement()) | |
if self.mode == 'capture' then | |
if self.blend_weight == nil then | |
self.target:resizeAs(self.G):copy(self.G) | |
elseif self.target:nElement() == 0 then | |
self.target:resizeAs(self.G):copy(self.G):mul(self.blend_weight) | |
else | |
self.target:add(self.blend_weight, self.G) | |
end | |
elseif self.mode == 'loss' then | |
self.loss = self.strength * self.crit:forward(self.G, self.target) | |
end | |
self.output = input | |
return self.output | |
end | |
function StyleLoss:updateGradInput(input, gradOutput) | |
if self.mode == 'loss' then | |
local dG = self.crit:backward(self.G, self.target) | |
dG:div(input:nElement()) | |
self.gradInput = self.gram:backward(input, dG) | |
if self.normalize then | |
self.gradInput:div(torch.norm(self.gradInput, 1) + 1e-8) | |
end | |
self.gradInput:mul(self.strength) | |
self.gradInput:add(gradOutput) | |
else | |
self.gradInput = gradOutput | |
end | |
return self.gradInput | |
end | |
local DeepDreamLoss, parent = torch.class('nn.DeepDreamLoss', 'nn.Module') | |
-- Deepdream from jcjohnson/fast-neural-style | |
function DeepDreamLoss:__init(strength, max_grad) | |
parent.__init(self) | |
self.strength = strength or 1e-5 | |
self.max_grad = max_grad or 100.0 | |
self.clipped = torch.Tensor() | |
self.loss = 0 | |
end | |
function DeepDreamLoss:updateOutput(input) | |
self.output = input | |
-- Contrast fix | |
self.output = self.output:mul(1/self.output:max()) | |
return self.output | |
end | |
function DeepDreamLoss:updateGradInput(input, gradOutput) | |
self.gradInput:resizeAs(gradOutput):copy(gradOutput) | |
self.clipped:resizeAs(input):clamp(input, -self.max_grad, self.max_grad) | |
self.gradInput:add(-self.strength, self.clipped) | |
return self.gradInput | |
end | |
local TVLoss, parent = torch.class('nn.TVLoss', 'nn.Module') | |
function TVLoss:__init(strength) | |
parent.__init(self) | |
self.strength = strength | |
self.x_diff = torch.Tensor() | |
self.y_diff = torch.Tensor() | |
end | |
function TVLoss:updateOutput(input) | |
self.output = input | |
return self.output | |
end | |
-- TV loss backward pass inspired by kaishengtai/neuralart | |
function TVLoss:updateGradInput(input, gradOutput) | |
self.gradInput:resizeAs(input):zero() | |
local C, H, W = input:size(1), input:size(2), input:size(3) | |
self.x_diff:resize(3, H - 1, W - 1) | |
self.y_diff:resize(3, H - 1, W - 1) | |
self.x_diff:copy(input[{{}, {1, -2}, {1, -2}}]) | |
self.x_diff:add(-1, input[{{}, {1, -2}, {2, -1}}]) | |
self.y_diff:copy(input[{{}, {1, -2}, {1, -2}}]) | |
self.y_diff:add(-1, input[{{}, {2, -1}, {1, -2}}]) | |
self.gradInput[{{}, {1, -2}, {1, -2}}]:add(self.x_diff):add(self.y_diff) | |
self.gradInput[{{}, {1, -2}, {2, -1}}]:add(-1, self.x_diff) | |
self.gradInput[{{}, {2, -1}, {1, -2}}]:add(-1, self.y_diff) | |
self.gradInput:mul(self.strength) | |
self.gradInput:add(gradOutput) | |
return self.gradInput | |
end | |
local L2Penalty, parent = torch.class('nn.L2Penalty','nn.Module') | |
--This module acts as an L2 latent state regularizer, adding the | |
--[gradOutput] to the gradient of the L2 loss. The [input] is copied to | |
--the [output]. | |
-- L2Penalty module from leongatys/NeuralImageSynthesis | |
function L2Penalty:__init(l2weight, sizeAverage, provideOutput) | |
parent.__init(self) | |
self.l2weight = l2weight | |
self.sizeAverage = sizeAverage or false | |
if provideOutput == nil then | |
self.provideOutput = true | |
else | |
self.provideOutput = provideOutput | |
end | |
end | |
function L2Penalty:updateOutput(input) | |
local m = self.l2weight | |
if self.sizeAverage == true then | |
m = m/input:nElement() | |
end | |
local loss = m*input:norm(2)/2 | |
self.loss = loss | |
self.output = input | |
return self.output | |
end | |
function L2Penalty:updateGradInput(input, gradOutput) | |
local m = self.l2weight | |
if self.sizeAverage == true then | |
m = m/input:nElement() | |
end | |
self.gradInput:resizeAs(input):copy(input):mul(m) | |
if self.provideOutput == true then | |
self.gradInput:add(gradOutput) | |
end | |
return self.gradInput | |
end | |
function TVGradient(input, gradOutput, strength) | |
local C, H, W = input:size(1), input:size(2), input:size(3) | |
local gradInput = torch.CudaTensor(C, H, W):zero() | |
local x_diff = torch.CudaTensor() | |
local y_diff = torch.CudaTensor() | |
x_diff:resize(3, H - 1, W - 1) | |
y_diff:resize(3, H - 1, W - 1) | |
x_diff:copy(input[{{}, {1, -2}, {1, -2}}]) | |
x_diff:add(-1, input[{{}, {1, -2}, {2, -1}}]) | |
y_diff:copy(input[{{}, {1, -2}, {1, -2}}]) | |
y_diff:add(-1, input[{{}, {2, -1}, {1, -2}}]) | |
gradInput[{{}, {1, -2}, {1, -2}}]:add(x_diff):add(y_diff) | |
gradInput[{{}, {1, -2}, {2, -1}}]:add(-1, x_diff) | |
gradInput[{{}, {2, -1}, {1, -2}}]:add(-1, y_diff) | |
gradInput:mul(strength) | |
gradInput:add(gradOutput) | |
return gradInput | |
end | |
local params = cmd:parse(arg) | |
main(params) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment