Skip to content

Instantly share code, notes, and snippets.

@ProGamerGov
Last active June 11, 2017 22:33
Show Gist options
  • Save ProGamerGov/ec7dae4f1a07f5333d820d18a48a18a8 to your computer and use it in GitHub Desktop.
Save ProGamerGov/ec7dae4f1a07f5333d820d18a48a18a8 to your computer and use it in GitHub Desktop.
New features include ".t7" Torch7 model support, Inception, ResNet, etc... architecture support, DeepDream, FC layers (caffemodels only) can be used as content layers and DeepDream layers, the ability to use label files, and an experimental pixel decay/L2 latent state regularizer.
-- Original DeepDream code by github.com/jcjohnson
-- Simaltaneous DeepDream and style transfer modifications by github.com/ProGamerGov
-- The FC layers as content layers feature, and the label file features come from:
-- github.com/htoyryla's gist.github.com/htoyryla/806ca4d978f0528114282cd00022ad71
-- Torch model and architecture support from https://github.com/szagoruyko/neural-style/tree/torch
require 'torch'
require 'nn'
require 'image'
require 'optim'
require 'loadcaffe'
local cmd = torch.CmdLine()
-- Basic options
cmd:option('-style_image', 'examples/inputs/seated-nude.jpg',
'Style target image')
cmd:option('-style_blend_weights', 'nil')
cmd:option('-content_image', 'examples/inputs/tubingen.jpg',
'Content target image')
cmd:option('-image_size', 512, 'Maximum height / width of generated image')
cmd:option('-gpu', '0', 'Zero-indexed ID of the GPU to use; for CPU mode set -gpu = -1')
cmd:option('-multigpu_strategy', '', 'Index of layers to split the network across GPUs')
-- Optimization options
cmd:option('-content_weight', 5e0)
cmd:option('-style_weight', 1e2)
cmd:option('-fc_weight', 5e2)
cmd:option('-tv_weight', 1e-3)
cmd:option('-num_iterations', 1000)
cmd:option('-normalize_gradients', false)
cmd:option('-init', 'random', 'random|image')
cmd:option('-init_image', '')
cmd:option('-optimizer', 'lbfgs', 'lbfgs|adam')
cmd:option('-learning_rate', 1e1)
cmd:option('-lbfgs_num_correction', 0)
-- Output options
cmd:option('-print_iter', 50)
cmd:option('-save_iter', 100)
cmd:option('-output_image', 'out.png')
-- Other options
cmd:option('-style_scale', 1.0)
cmd:option('-original_colors', 0)
cmd:option('-pooling', 'max', 'max|avg')
cmd:option('-proto_file', 'models/VGG_ILSVRC_19_layers_deploy.prototxt')
cmd:option('-model_file', 'models/VGG_ILSVRC_19_layers.caffemodel')
cmd:option('-label_file', '')
cmd:option('-backend', 'nn', 'nn|cudnn|clnn')
cmd:option('-cudnn_autotune', false)
cmd:option('-seed', -1)
cmd:option('-content_layers', 'relu4_2', 'layers for content')
cmd:option('-style_layers', 'relu1_1,relu2_1,relu3_1,relu4_1,relu5_1', 'layers for style')
-- Options for DeepDream
cmd:option('-deepdream_layers', '')
cmd:option('-deepdream_weights', '')
-- Experimental leongatys/NeuralImageSynthesis features
cmd:option('-l2_weight', '0')
labels = {}
local function main(params)
if params.label_file ~= '' then
f = io.open(params.label_file)
if f then
for line in f:lines() do
table.insert(labels, line)
end
end
end
local dtype, multigpu = setup_gpu(params)
local loadcaffe_backend = params.backend
if params.backend == 'clnn' then loadcaffe_backend = 'nn' end
local cnn
local is_caffemodel = params.model_file:find'caffemodel'
if is_caffemodel then
cnn = loadcaffe.load(params.proto_file, params.model_file, loadcaffe_backend):type(dtype)
else
cnn = torch.load(params.model_file):type(dtype)
if cnn.unpack then cnn = cnn:unpack() end
--cnn = (cnn):type(dtype)
end
local content_image = image.load(params.content_image, 3)
content_image = image.scale(content_image, params.image_size, 'bilinear')
local content_image_caffe = preprocess(content_image):float()
local style_size = math.ceil(params.style_scale * params.image_size)
local style_image_list = params.style_image:split(',')
local style_images_caffe = {}
for _, img_path in ipairs(style_image_list) do
local img = image.load(img_path, 3)
img = image.scale(img, style_size, 'bilinear')
local img_caffe = preprocess(img):float()
table.insert(style_images_caffe, img_caffe)
end
local init_image = nil
if params.init_image ~= '' then
init_image = image.load(params.init_image, 3)
local H, W = content_image:size(2), content_image:size(3)
init_image = image.scale(init_image, W, H, 'bilinear')
init_image = preprocess(init_image):float()
end
-- Handle style blending weights for multiple style inputs
local style_blend_weights = nil
if params.style_blend_weights == 'nil' then
-- Style blending not specified, so use equal weighting
style_blend_weights = {}
for i = 1, #style_image_list do
table.insert(style_blend_weights, 1.0)
end
else
style_blend_weights = params.style_blend_weights:split(',')
assert(#style_blend_weights == #style_image_list,
'-style_blend_weights and -style_images must have the same number of elements')
end
-- Normalize the style blending weights so they sum to 1
local style_blend_sum = 0
for i = 1, #style_blend_weights do
style_blend_weights[i] = tonumber(style_blend_weights[i])
style_blend_sum = style_blend_sum + style_blend_weights[i]
end
for i = 1, #style_blend_weights do
style_blend_weights[i] = style_blend_weights[i] / style_blend_sum
end
local content_layers = params.content_layers:split(",")
local style_layers = params.style_layers:split(",")
local deepdream_layers = params.deepdream_layers:split(",")
-- Set up the network, inserting style and content loss modules
local content_losses, style_losses, deepdream_losses = {}, {}, {}
local next_content_idx, next_style_idx, next_deepdream_idx = 1, 1, 1
local net = nn.Sequential()
if params.tv_weight > 0 then
local tv_mod = nn.TVLoss(params.tv_weight):type(dtype)
net:add(tv_mod)
end
if params.l2_weight ~= 0 then
local l2_mod = nn.L2Penalty(params.l2_weight):type(dtype)
net:add(l2_mod)
end
for i = 1, #cnn do
local layer = cnn:get(i)
-- Makes FC Layers usable as content layers.
if (torch.type(layer) == "nn.View") then
addlayer = nn.SpatialAdaptiveMaxPooling(7,7):type(dtype)
net:add(addlayer)
end
if next_content_idx <= #content_layers or next_style_idx <= #style_layers then
--local layer = cnn:get(i)
--local name = layer.name
local name = is_caffemodel and layer.name or tostring(i)
local layer_type = torch.type(layer)
local is_pooling = (layer_type == 'cudnn.SpatialMaxPooling' or layer_type == 'nn.SpatialMaxPooling')
if is_pooling and params.pooling == 'avg' then
assert(layer.padW == 0 and layer.padH == 0)
local kW, kH = layer.kW, layer.kH
local dW, dH = layer.dW, layer.dH
local avg_pool_layer = nn.SpatialAveragePooling(kW, kH, dW, dH):type(dtype)
local msg = 'Replacing max pooling at layer %d with average pooling'
print(string.format(msg, i))
net:add(avg_pool_layer)
else
if params.label_file ~= '' then
if layer_type ~= "nn.Dropout" then
layer:type(dtype)
net:add(layer)
end
else
net:add(layer)
end
end
if name == content_layers[next_content_idx] then
print("Setting up content layer", i, ":", layer.name)
local norm = params.normalize_gradients
local cweight = params.content_weight
if is_caffemodel then
local pos, _ = string.find(layer.name, "fc")
if pos == 1 then -- this is an fc layer
cweight = params.fc_weight
end
end
local loss_module = nn.ContentLoss(cweight, norm):type(dtype)
net:add(loss_module)
table.insert(content_losses, loss_module)
next_content_idx = next_content_idx + 1
end
if name == style_layers[next_style_idx] then
print("Setting up style layer ", i, ":", layer.name)
local norm = params.normalize_gradients
local loss_module = nn.StyleLoss(params.style_weight, norm):type(dtype)
net:add(loss_module)
table.insert(style_losses, loss_module)
next_style_idx = next_style_idx + 1
end
if name == deepdream_layers[next_deepdream_idx] then
print("Setting up Deepdream layer ", i, ":", layer.name)
local dweight = params.deepdream_weights
if is_caffemodel then
local pos, _ = string.find(layer.name, "fc")
if pos == 1 then -- this is an fc layer
dweight = params.fc_weight
end
end
local loss_module = nn.DeepDreamLoss(dweight):type(dtype)
net:add(loss_module)
table.insert(deepdream_losses, loss_module)
next_deepdream_idx = next_deepdream_idx + 1
end
else
if params.label_file ~= '' then
if layer_type ~= "nn.Dropout" then
layer:type(dtype)
net:add(layer)
end
end
end
end
if params.label_file ~= '' then
--vgg16 places lacks softmax at the end, so insert one
local prob = nn.SoftMax():type(dtype)
net:add(prob)
end
if multigpu then
net = setup_multi_gpu(net, params)
end
net:type(dtype)
-- Capture content targets
for i = 1, #content_losses do
content_losses[i].mode = 'capture'
end
print 'Capturing content targets'
print(net)
content_image_caffe = content_image_caffe:type(dtype)
net:forward(content_image_caffe:type(dtype))
-- Capture style targets
for i = 1, #content_losses do
content_losses[i].mode = 'none'
end
for i = 1, #style_images_caffe do
print(string.format('Capturing style target %d', i))
for j = 1, #style_losses do
style_losses[j].mode = 'capture'
style_losses[j].blend_weight = style_blend_weights[i]
end
net:forward(style_images_caffe[i]:type(dtype))
end
-- Capture deepdream targets
if params.deepdream_layers ~= '' then
for i = 1, #deepdream_losses do
deepdream_losses[i].mode = 'capture'
end
print 'Capturing deepdream targets'
--print(net)
end
-- Set all loss modules to loss mode
for i = 1, #content_losses do
content_losses[i].mode = 'loss'
end
for i = 1, #style_losses do
style_losses[i].mode = 'loss'
end
if params.deepdream_layers ~= '' then
for i = 1, #deepdream_losses do
deepdream_losses[i].mode = 'loss'
end
end
-- We don't need the base CNN anymore, so clean it up to save memory.
cnn = nil
for i=1, #net.modules do
local module = net.modules[i]
if torch.type(module) == 'nn.SpatialConvolutionMM' then
-- remove these, not used, but uses gpu memory
module.gradWeight = nil
module.gradBias = nil
end
end
collectgarbage()
-- Initialize the image
if params.seed >= 0 then
torch.manualSeed(params.seed)
end
local img = nil
if params.init == 'random' then
img = torch.randn(content_image:size()):float():mul(0.001)
elseif params.init == 'image' then
if init_image then
img = init_image:clone()
else
img = content_image_caffe:clone()
end
else
error('Invalid init type')
end
img = img:type(dtype)
if params.label_file ~= '' then
--try the network with content image to detect features
cimg = content_image_caffe:clone():float()
cimg = cimg:type(dtype)
if f then
local p = net:forward(cimg)
print("----------- Detected Features --------------")
for i=1, #labels do
if p[i] > 0.03 then
print(string.format("%.4f %s", p[i], labels[i]))
end
end
end
end
-- Run it through the network once to get the proper size for the gradient
-- All the gradients will come from the extra loss modules, so we just pass
-- zeros into the top of the net on the backward pass.
local y = net:forward(img)
local dy = img.new(#y):zero()
-- Declaring this here lets us access it in maybe_print
local optim_state = nil
if params.optimizer == 'lbfgs' then
optim_state = {
maxIter = params.num_iterations,
verbose=true,
tolX=-1,
tolFun=-1,
}
if params.lbfgs_num_correction > 0 then
optim_state.nCorrection = params.lbfgs_num_correction
end
elseif params.optimizer == 'adam' then
optim_state = {
learningRate = params.learning_rate,
}
else
error(string.format('Unrecognized optimizer "%s"', params.optimizer))
end
local function maybe_print(t, loss, p)
local verbose = (params.print_iter > 0 and t % params.print_iter == 0)
if verbose then
print(string.format('Iteration %d / %d', t, params.num_iterations))
for i, loss_module in ipairs(content_losses) do
print(string.format(' Content %d loss: %f', i, loss_module.loss))
end
for i, loss_module in ipairs(style_losses) do
print(string.format(' Style %d loss: %f', i, loss_module.loss))
end
print(string.format(' Total loss: %f', loss))
if f then
for i=1, #labels do
if p[i] > 0.03 then
print(string.format("%.4f %s", p[i], labels[i]))
end
end
end
end
end
local function maybe_save(t)
local should_save = params.save_iter > 0 and t % params.save_iter == 0
should_save = should_save or t == params.num_iterations
if should_save then
local disp = deprocess(img:double())
disp = image.minmax{tensor=disp, min=0, max=1}
local filename = build_filename(params.output_image, t)
if t == params.num_iterations then
filename = params.output_image
end
-- Maybe perform postprocessing for color-independent style transfer
if params.original_colors == 1 then
disp = original_colors(content_image, disp)
end
image.save(filename, disp)
end
end
-- Function to evaluate loss and gradient. We run the net forward and
-- backward to get the gradient, and sum up losses from the loss modules.
-- optim.lbfgs internally handles iteration and calls this function many
-- times, so we manually count the number of iterations to handle printing
-- and saving intermediate results.
local num_calls = 0
local function feval(x)
num_calls = num_calls + 1
local p
if params.label_file ~= '' then
p = net:forward(x)
else
net:forward(x)
end
local grad = net:updateGradInput(x, dy)
local loss = 0
for _, mod in ipairs(content_losses) do
loss = loss + mod.loss
end
for _, mod in ipairs(style_losses) do
loss = loss + mod.loss
end
if params.deepdream_layers ~= '' then
for _, mod in ipairs(deepdream_losses) do
loss = loss + mod.loss
end
end
if params.label_file ~= '' then
maybe_print(num_calls, loss, p)
else
maybe_print(num_calls, loss)
end
maybe_save(num_calls)
collectgarbage()
-- optim.lbfgs expects a vector for gradients
return loss, grad:view(grad:nElement())
end
-- Run optimization.
if params.optimizer == 'lbfgs' then
print('Running optimization with L-BFGS')
local x, losses = optim.lbfgs(feval, img, optim_state)
elseif params.optimizer == 'adam' then
print('Running optimization with ADAM')
for t = 1, params.num_iterations do
local x, losses = optim.adam(feval, img, optim_state)
end
end
end
function setup_gpu(params)
local multigpu = false
if params.gpu:find(',') then
multigpu = true
params.gpu = params.gpu:split(',')
for i = 1, #params.gpu do
params.gpu[i] = tonumber(params.gpu[i]) + 1
end
else
params.gpu = tonumber(params.gpu) + 1
end
local dtype = 'torch.FloatTensor'
if multigpu or params.gpu > 0 then
if params.backend ~= 'clnn' then
require 'cutorch'
require 'cunn'
if multigpu then
cutorch.setDevice(params.gpu[1])
else
cutorch.setDevice(params.gpu)
end
dtype = 'torch.CudaTensor'
else
require 'clnn'
require 'cltorch'
if multigpu then
cltorch.setDevice(params.gpu[1])
else
cltorch.setDevice(params.gpu)
end
dtype = torch.Tensor():cl():type()
end
else
params.backend = 'nn'
end
if params.backend == 'cudnn' then
require 'cudnn'
if params.cudnn_autotune then
cudnn.benchmark = true
end
cudnn.SpatialConvolution.accGradParameters = nn.SpatialConvolutionMM.accGradParameters -- ie: nop
end
return dtype, multigpu
end
function setup_multi_gpu(net, params)
local DEFAULT_STRATEGIES = {
[2] = {3},
}
local gpu_splits = nil
if params.multigpu_strategy == '' then
-- Use a default strategy
gpu_splits = DEFAULT_STRATEGIES[#params.gpu]
-- Offset the default strategy by one if we are using TV
if params.tv_weight > 0 then
for i = 1, #gpu_splits do gpu_splits[i] = gpu_splits[i] + 1 end
end
else
-- Use the user-specified multigpu strategy
gpu_splits = params.multigpu_strategy:split(',')
for i = 1, #gpu_splits do
gpu_splits[i] = tonumber(gpu_splits[i])
end
end
assert(gpu_splits ~= nil, 'Must specify -multigpu_strategy')
local gpus = params.gpu
local cur_chunk = nn.Sequential()
local chunks = {}
for i = 1, #net do
cur_chunk:add(net:get(i))
if i == gpu_splits[1] then
table.remove(gpu_splits, 1)
table.insert(chunks, cur_chunk)
cur_chunk = nn.Sequential()
end
end
table.insert(chunks, cur_chunk)
assert(#chunks == #gpus)
local new_net = nn.Sequential()
for i = 1, #chunks do
local out_device = nil
if i == #chunks then
out_device = gpus[1]
end
new_net:add(nn.GPU(chunks[i], gpus[i], out_device))
end
return new_net
end
function build_filename(output_image, iteration)
local ext = paths.extname(output_image)
local basename = paths.basename(output_image, ext)
local directory = paths.dirname(output_image)
return string.format('%s/%s_%d.%s',directory, basename, iteration, ext)
end
-- Preprocess an image before passing it to a Caffe model.
-- We need to rescale from [0, 1] to [0, 255], convert from RGB to BGR,
-- and subtract the mean pixel.
function preprocess(img)
local mean_pixel = torch.DoubleTensor({103.939, 116.779, 123.68})
local perm = torch.LongTensor{3, 2, 1}
img = img:index(1, perm):mul(256.0)
mean_pixel = mean_pixel:view(3, 1, 1):expandAs(img)
img:add(-1, mean_pixel)
return img
end
-- Undo the above preprocessing.
function deprocess(img)
local mean_pixel = torch.DoubleTensor({103.939, 116.779, 123.68})
mean_pixel = mean_pixel:view(3, 1, 1):expandAs(img)
img = img + mean_pixel
local perm = torch.LongTensor{3, 2, 1}
img = img:index(1, perm):div(256.0)
return img
end
-- Combine the Y channel of the generated image and the UV channels of the
-- content image to perform color-independent style transfer.
function original_colors(content, generated)
local generated_y = image.rgb2yuv(generated)[{{1, 1}}]
local content_uv = image.rgb2yuv(content)[{{2, 3}}]
return image.yuv2rgb(torch.cat(generated_y, content_uv, 1))
end
-- Define an nn Module to compute content loss in-place
local ContentLoss, parent = torch.class('nn.ContentLoss', 'nn.Module')
function ContentLoss:__init(strength, normalize)
parent.__init(self)
self.strength = strength
self.target = torch.Tensor()
self.normalize = normalize or false
self.loss = 0
self.crit = nn.MSECriterion()
self.mode = 'none'
end
function ContentLoss:updateOutput(input)
if self.mode == 'loss' then
self.loss = self.crit:forward(input, self.target) * self.strength
elseif self.mode == 'capture' then
self.target:resizeAs(input):copy(input)
end
self.output = input
return self.output
end
function ContentLoss:updateGradInput(input, gradOutput)
if self.mode == 'loss' then
if input:nElement() == self.target:nElement() then
self.gradInput = self.crit:backward(input, self.target)
end
if self.normalize then
self.gradInput:div(torch.norm(self.gradInput, 1) + 1e-8)
end
self.gradInput:mul(self.strength)
self.gradInput:add(gradOutput)
else
self.gradInput:resizeAs(gradOutput):copy(gradOutput)
end
return self.gradInput
end
local Gram, parent = torch.class('nn.GramMatrix', 'nn.Module')
function Gram:__init()
parent.__init(self)
end
function Gram:updateOutput(input)
assert(input:dim() == 3)
local C, H, W = input:size(1), input:size(2), input:size(3)
local x_flat = input:view(C, H * W)
self.output:resize(C, C)
self.output:mm(x_flat, x_flat:t())
return self.output
end
function Gram:updateGradInput(input, gradOutput)
assert(input:dim() == 3 and input:size(1))
local C, H, W = input:size(1), input:size(2), input:size(3)
local x_flat = input:view(C, H * W)
self.gradInput:resize(C, H * W):mm(gradOutput, x_flat)
self.gradInput:addmm(gradOutput:t(), x_flat)
self.gradInput = self.gradInput:view(C, H, W)
return self.gradInput
end
-- Define an nn Module to compute style loss in-place
local StyleLoss, parent = torch.class('nn.StyleLoss', 'nn.Module')
function StyleLoss:__init(strength, normalize)
parent.__init(self)
self.normalize = normalize or false
self.strength = strength
self.target = torch.Tensor()
self.mode = 'none'
self.loss = 0
self.gram = nn.GramMatrix()
self.blend_weight = nil
self.G = nil
self.crit = nn.MSECriterion()
end
function StyleLoss:updateOutput(input)
self.G = self.gram:forward(input)
self.G:div(input:nElement())
if self.mode == 'capture' then
if self.blend_weight == nil then
self.target:resizeAs(self.G):copy(self.G)
elseif self.target:nElement() == 0 then
self.target:resizeAs(self.G):copy(self.G):mul(self.blend_weight)
else
self.target:add(self.blend_weight, self.G)
end
elseif self.mode == 'loss' then
self.loss = self.strength * self.crit:forward(self.G, self.target)
end
self.output = input
return self.output
end
function StyleLoss:updateGradInput(input, gradOutput)
if self.mode == 'loss' then
local dG = self.crit:backward(self.G, self.target)
dG:div(input:nElement())
self.gradInput = self.gram:backward(input, dG)
if self.normalize then
self.gradInput:div(torch.norm(self.gradInput, 1) + 1e-8)
end
self.gradInput:mul(self.strength)
self.gradInput:add(gradOutput)
else
self.gradInput = gradOutput
end
return self.gradInput
end
local DeepDreamLoss, parent = torch.class('nn.DeepDreamLoss', 'nn.Module')
-- Deepdream from jcjohnson/fast-neural-style
function DeepDreamLoss:__init(strength, max_grad)
parent.__init(self)
self.strength = strength or 1e-5
self.max_grad = max_grad or 100.0
self.clipped = torch.Tensor()
self.loss = 0
end
function DeepDreamLoss:updateOutput(input)
self.output = input
-- Contrast fix
self.output = self.output:mul(1/self.output:max())
return self.output
end
function DeepDreamLoss:updateGradInput(input, gradOutput)
self.gradInput:resizeAs(gradOutput):copy(gradOutput)
self.clipped:resizeAs(input):clamp(input, -self.max_grad, self.max_grad)
self.gradInput:add(-self.strength, self.clipped)
return self.gradInput
end
local TVLoss, parent = torch.class('nn.TVLoss', 'nn.Module')
function TVLoss:__init(strength)
parent.__init(self)
self.strength = strength
self.x_diff = torch.Tensor()
self.y_diff = torch.Tensor()
end
function TVLoss:updateOutput(input)
self.output = input
return self.output
end
-- TV loss backward pass inspired by kaishengtai/neuralart
function TVLoss:updateGradInput(input, gradOutput)
self.gradInput:resizeAs(input):zero()
local C, H, W = input:size(1), input:size(2), input:size(3)
self.x_diff:resize(3, H - 1, W - 1)
self.y_diff:resize(3, H - 1, W - 1)
self.x_diff:copy(input[{{}, {1, -2}, {1, -2}}])
self.x_diff:add(-1, input[{{}, {1, -2}, {2, -1}}])
self.y_diff:copy(input[{{}, {1, -2}, {1, -2}}])
self.y_diff:add(-1, input[{{}, {2, -1}, {1, -2}}])
self.gradInput[{{}, {1, -2}, {1, -2}}]:add(self.x_diff):add(self.y_diff)
self.gradInput[{{}, {1, -2}, {2, -1}}]:add(-1, self.x_diff)
self.gradInput[{{}, {2, -1}, {1, -2}}]:add(-1, self.y_diff)
self.gradInput:mul(self.strength)
self.gradInput:add(gradOutput)
return self.gradInput
end
local L2Penalty, parent = torch.class('nn.L2Penalty','nn.Module')
--This module acts as an L2 latent state regularizer, adding the
--[gradOutput] to the gradient of the L2 loss. The [input] is copied to
--the [output].
-- L2Penalty module from leongatys/NeuralImageSynthesis
function L2Penalty:__init(l2weight, sizeAverage, provideOutput)
parent.__init(self)
self.l2weight = l2weight
self.sizeAverage = sizeAverage or false
if provideOutput == nil then
self.provideOutput = true
else
self.provideOutput = provideOutput
end
end
function L2Penalty:updateOutput(input)
local m = self.l2weight
if self.sizeAverage == true then
m = m/input:nElement()
end
local loss = m*input:norm(2)/2
self.loss = loss
self.output = input
return self.output
end
function L2Penalty:updateGradInput(input, gradOutput)
local m = self.l2weight
if self.sizeAverage == true then
m = m/input:nElement()
end
self.gradInput:resizeAs(input):copy(input):mul(m)
if self.provideOutput == true then
self.gradInput:add(gradOutput)
end
return self.gradInput
end
local params = cmd:parse(arg)
main(params)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment