Last active
July 27, 2016 01:20
-
-
Save ProGamerGov/ef5ce8f11f3a8d798a1610d3e9a8ce38 to your computer and use it in GitHub Desktop.
The "illust2vec_tag.prototxt" Converted so that you can you the "illust2vec_tag" model in systems such as Deepdream
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
name: "CaffeNet" | |
force_backward: true | |
input: "data" | |
input_dim: 1 | |
input_dim: 3 | |
input_dim: 224 | |
input_dim: 224 | |
layer { | |
name: "conv1_1" | |
type: "Convolution" | |
bottom: "data" | |
top: "conv1_1" | |
convolution_param { | |
num_output: 64 | |
kernel_size: 3 | |
stride: 1 | |
pad: 1 | |
} | |
} | |
layer { | |
name: "relu1_1" | |
type: "ReLU" | |
bottom: "conv1_1" | |
top: "conv1_1" | |
} | |
layer { | |
name: "pool1" | |
type: "Pooling" | |
bottom: "conv1_1" | |
top: "pool1" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "conv2_1" | |
type: "Convolution" | |
bottom: "pool1" | |
top: "conv2_1" | |
convolution_param { | |
num_output: 128 | |
kernel_size: 3 | |
stride: 1 | |
pad: 1 | |
} | |
} | |
layer { | |
name: "relu2_1" | |
type: "ReLU" | |
bottom: "conv2_1" | |
top: "conv2_1" | |
} | |
layer { | |
name: "pool2" | |
type: "Pooling" | |
bottom: "conv2_1" | |
top: "pool2" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "conv3_1" | |
type: "Convolution" | |
bottom: "pool2" | |
top: "conv3_1" | |
convolution_param { | |
num_output: 256 | |
kernel_size: 3 | |
stride: 1 | |
pad: 1 | |
} | |
} | |
layer { | |
name: "relu3_1" | |
type: "ReLU" | |
bottom: "conv3_1" | |
top: "conv3_1" | |
} | |
layer { | |
name: "conv3_2" | |
type: "Convolution" | |
bottom: "conv3_1" | |
top: "conv3_2" | |
convolution_param { | |
num_output: 256 | |
kernel_size: 3 | |
stride: 1 | |
pad: 1 | |
} | |
} | |
layer { | |
name: "relu3_2" | |
type: "ReLU" | |
bottom: "conv3_2" | |
top: "conv3_2" | |
} | |
layer { | |
name: "pool3" | |
type: "Pooling" | |
bottom: "conv3_2" | |
top: "pool3" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "conv4_1" | |
type: "Convolution" | |
bottom: "pool3" | |
top: "conv4_1" | |
convolution_param { | |
num_output: 512 | |
kernel_size: 3 | |
stride: 1 | |
pad: 1 | |
} | |
} | |
layer { | |
name: "relu4_1" | |
type: "ReLU" | |
bottom: "conv4_1" | |
top: "conv4_1" | |
} | |
layer { | |
name: "conv4_2" | |
type: "Convolution" | |
bottom: "conv4_1" | |
top: "conv4_2" | |
convolution_param { | |
num_output: 512 | |
kernel_size: 3 | |
stride: 1 | |
pad: 1 | |
} | |
} | |
layer { | |
name: "relu4_2" | |
type: "ReLU" | |
bottom: "conv4_2" | |
top: "conv4_2" | |
} | |
layer { | |
name: "pool4" | |
type: "Pooling" | |
bottom: "conv4_2" | |
top: "pool4" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "conv5_1" | |
type: "Convolution" | |
bottom: "pool4" | |
top: "conv5_1" | |
convolution_param { | |
num_output: 512 | |
kernel_size: 3 | |
stride: 1 | |
pad: 1 | |
} | |
} | |
layer { | |
name: "relu5_1" | |
type: "ReLU" | |
bottom: "conv5_1" | |
top: "conv5_1" | |
} | |
layer { | |
name: "conv5_2" | |
type: "Convolution" | |
bottom: "conv5_1" | |
top: "conv5_2" | |
convolution_param { | |
num_output: 512 | |
kernel_size: 3 | |
stride: 1 | |
pad: 1 | |
} | |
} | |
layer { | |
name: "relu5_2" | |
type: "ReLU" | |
bottom: "conv5_2" | |
top: "conv5_2" | |
} | |
layer { | |
name: "pool5" | |
type: "Pooling" | |
bottom: "conv5_2" | |
top: "pool5" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "conv6_1" | |
type: "Convolution" | |
bottom: "pool5" | |
top: "conv6_1" | |
convolution_param { | |
num_output: 1024 | |
kernel_size: 3 | |
stride: 1 | |
pad: 1 | |
} | |
} | |
layer { | |
name: "relu6_1" | |
type: "ReLU" | |
bottom: "conv6_1" | |
top: "conv6_1" | |
} | |
layer { | |
name: "conv6_2" | |
type: "Convolution" | |
bottom: "conv6_1" | |
top: "conv6_2" | |
convolution_param { | |
num_output: 1024 | |
kernel_size: 3 | |
stride: 1 | |
pad: 1 | |
} | |
} | |
layer { | |
name: "relu6_2" | |
type: "ReLU" | |
bottom: "conv6_2" | |
top: "conv6_2" | |
} | |
layer { | |
name: "conv6_3" | |
type: "Convolution" | |
bottom: "conv6_2" | |
top: "conv6_3" | |
convolution_param { | |
num_output: 1024 | |
kernel_size: 3 | |
stride: 1 | |
pad: 1 | |
} | |
} | |
layer { | |
name: "relu6_3" | |
type: "ReLU" | |
bottom: "conv6_3" | |
top: "conv6_3" | |
} | |
layer { | |
name: "conv6_4" | |
type: "Convolution" | |
bottom: "conv6_3" | |
top: "conv6_4" | |
convolution_param { | |
num_output: 1539 | |
kernel_size: 3 | |
stride: 1 | |
pad: 1 | |
} | |
} | |
layer { | |
name: "pool6" | |
type: "Pooling" | |
bottom: "conv6_4" | |
top: "pool6" | |
pooling_param { | |
pool: AVE | |
global_pooling: true | |
} | |
} | |
layer { | |
name: "prob" | |
type: "Sigmoid" | |
bottom: "pool6" | |
top: "prob" | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
This prototxt is for using the illust2vec on GoogleNet systems such as Deepdream.