Last active
June 5, 2021 08:38
-
-
Save Pythonista7/221a2619070cb677caec2749df763b1a to your computer and use it in GitHub Desktop.
Tensorflow-MNIST
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
mnist = tf.keras.datasets.mnist | |
(x_train, y_train), (x_test, y_test) = mnist.load_data() | |
x_train, x_test = x_train / 255.0, x_test / 255.0 | |
model = tf.keras.models.Sequential([ | |
tf.keras.layers.Flatten(input_shape=(28, 28)), | |
tf.keras.layers.Dense(128, activation='relu'), | |
tf.keras.layers.Dense(16, activation='relu'), | |
tf.keras.layers.Dropout(0.2), | |
tf.keras.layers.Dense(10) | |
]) | |
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) | |
model.compile(optimizer='adam',loss=loss_fn, | |
metrics=['accuracy']) | |
model.fit(x_train, y_train, epochs=2) | |
model.evaluate(x_test,y_test) #0.98 | |
predictions = model(x_test[:1]).numpy() | |
tf.math.argmax(tf.nn.softmax(predictions).numpy()) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment