Created
March 18, 2020 23:41
-
-
Save RP-3/8258358d4793ffeba76f163093d3b9b0 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Bottom-up DFS. Accepted. | |
# O(n) | |
class Solution: | |
def maxProduct(self, root: TreeNode) -> int: | |
treeSum = root.val + self.sumTree(root.left) + self.sumTree(root.right) | |
result = 0 | |
def dfs(root): | |
if root is None: return 0 | |
nonlocal result | |
lSum = dfs(root.left) | |
rSum = dfs(root.right) | |
breakLeft = lSum * (treeSum - lSum) | |
breakRight = rSum * (treeSum - rSum) | |
result = max(result, breakLeft, breakRight) | |
return lSum + rSum + root.val | |
dfs(root) | |
return result%(pow(10, 9)+7) | |
def sumTree(self, root): | |
return (root.val + self.sumTree(root.left) + self.sumTree(root.right)) if root else 0 | |
# Top-Down recursive. TLE | |
# O(n^2)? Because every parent node visits every child node independently? | |
class Solution: | |
def maxProduct(self, root: TreeNode) -> int: | |
rSum = self.sumTree(root.right) | |
lSum = self.sumTree(root.left) | |
breakLeft = (root.val + rSum) * lSum | |
breakRight = (root.val + lSum) * rSum | |
deepLeft = self.maxProdWithParent(root.left, rSum + root.val) | |
deepRight = self.maxProdWithParent(root.right, lSum + root.val) | |
result = max(breakLeft, breakRight, deepLeft, deepRight) | |
return result%(pow(10, 9)+7) | |
def maxProdWithParent(self, root, parentSum): | |
if not root: return 0 | |
rSum = self.sumTree(root.right) | |
lSum = self.sumTree(root.left) | |
breakParent = parentSum * (lSum + rSum + root.val) | |
deepLeft = self.maxProdWithParent(root.left, parentSum + rSum + root.val) | |
deepRight = self.maxProdWithParent(root.right, parentSum + lSum + root.val) | |
return max(breakParent, deepLeft, deepRight) | |
def sumTree(self, root): | |
return (root.val + self.sumTree(root.left) + self.sumTree(root.right)) if root else 0 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment