Last active
June 17, 2023 06:23
-
-
Save RahulDas-dev/e17486e2c86410c72d7016182320f2e0 to your computer and use it in GitHub Desktop.
Pycaret.ipynb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"nbformat": 4, | |
"nbformat_minor": 0, | |
"metadata": { | |
"colab": { | |
"private_outputs": true, | |
"provenance": [], | |
"gpuType": "T4", | |
"toc_visible": true, | |
"mount_file_id": "13J41VzJ-ZDT6B2QZeMQ_-5Z6-nvG4Ecy", | |
"authorship_tag": "ABX9TyMTU3zQvTasD8kHtYwCNDfC", | |
"include_colab_link": true | |
}, | |
"kernelspec": { | |
"name": "python3", | |
"display_name": "Python 3" | |
}, | |
"language_info": { | |
"name": "python" | |
}, | |
"accelerator": "GPU" | |
}, | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "view-in-github", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"<a href=\"https://colab.research.google.com/gist/RahulDas-dev/e17486e2c86410c72d7016182320f2e0/untitled0.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"id": "ietKSaOfchIj" | |
}, | |
"outputs": [], | |
"source": [ | |
"!pip install pycaret\n", | |
"!pip install statsforecast\n", | |
"!pip install pycaret[models]" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"from pycaret import show_versions\n", | |
"\n", | |
"show_versions()" | |
], | |
"metadata": { | |
"id": "gcHleTupyjtv" | |
}, | |
"execution_count": null, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"import numpy as np\n", | |
"import pandas as pd\n", | |
"\n", | |
"from pycaret.time_series import TSForecastingExperiment\n", | |
"from pycaret.datasets import get_data\n", | |
"import statsforecast" | |
], | |
"metadata": { | |
"id": "g_rsrTqEdeKx" | |
}, | |
"execution_count": null, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"#dataframe = pd.read_csv('./drive/MyDrive/datasets/AirQualityUCI.csv')\n", | |
"dataframe = get_data(\"airquality\", verbose=False)\n", | |
"print(dataframe.shape)\n", | |
"\n", | |
"dataframe['Date_Time'] = dataframe['Date']+dataframe['Time'].apply(lambda x: str(' ')+x)\n", | |
"\n", | |
"dataframe['Date_Time'] = pd.to_datetime(dataframe['Date_Time'])\n", | |
"\n", | |
"dataframe.drop(columns=['Date','Time'], inplace=True)\n", | |
"\n", | |
"target = \"CO(GT)\"\n", | |
"\n", | |
"#cols_sel = ['Date_Time','CO_true','NMHC_true','C6H6_true','NMHC_sensor','NO2_true','T','RH']\n", | |
"\n", | |
"#dataframe = dataframe[cols_sel].copy(deep=True)\n", | |
"\n", | |
"dataframe.replace(-200, np.nan, inplace=True)\n", | |
"\n", | |
"dataframe.head()" | |
], | |
"metadata": { | |
"id": "qdFygqaUeCn9" | |
}, | |
"execution_count": null, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"global_fig_settings = {\n", | |
" # \"renderer\": \"notebook\",\n", | |
" \"renderer\": \"png\",\n", | |
" \"width\": 1000,\n", | |
" \"height\": 600,\n", | |
"}\n", | |
"\n", | |
"exp_auto = TSForecastingExperiment()\n", | |
"\n", | |
"FH=48\n", | |
"metric = \"mase\"\n", | |
"\n", | |
"exp_auto.setup(\n", | |
" data=dataframe,\n", | |
" target=target,\n", | |
" index='Date_Time',\n", | |
" engine={\"auto_arima\": \"statsforecast\"},\n", | |
" use_gpu=True,\n", | |
" fh=FH, enforce_exogenous=True,\n", | |
" numeric_imputation_target=\"ffill\", numeric_imputation_exogenous=\"ffill\",\n", | |
" fig_kwargs=global_fig_settings, session_id=42\n", | |
")" | |
], | |
"metadata": { | |
"id": "5vD0oR9YfvML" | |
}, | |
"execution_count": null, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"exclude = [\"auto_arima\", \"bats\", \"tbats\"]\n", | |
"best = exp_auto.compare_models(sort=metric, turbo=False, exclude=exclude)" | |
], | |
"metadata": { | |
"id": "TShIivkogx5n" | |
}, | |
"execution_count": null, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"exp_auto.plot_model(best)" | |
], | |
"metadata": { | |
"id": "oRHCl_0VoqCG" | |
}, | |
"execution_count": null, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"exp_auto.create_model(\"lasso_cds_dt\")" | |
], | |
"metadata": { | |
"id": "MIyJXuTmpPY9" | |
}, | |
"execution_count": null, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [ | |
"# New Section" | |
], | |
"metadata": { | |
"id": "Dm01nJ2XyKQ2" | |
} | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [ | |
"# New Section" | |
], | |
"metadata": { | |
"id": "FP6Epn82dwDn" | |
} | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment