-
-
Save RandyMcMillan/15f6931397033208f38d5ade44d37de2 to your computer and use it in GitHub Desktop.
faux_polar_ecc.rs
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| use std::f64::consts::PI; | |
| // Note: This implementation uses f64 (floating-point) for the polar coordinates (r, theta) | |
| // and trigonometric functions (sin, cos). This approach is for **geometric demonstration** // and is NOT how Elliptic Curve Cryptography (ECC) is performed, as ECC requires | |
| // all arithmetic to be done with **integers** in a finite field (modulo P). | |
| // The equation evaluated is: | |
| // r^2 * sin^2(θ) = (A_std * r^3 * cos^3(θ) + B_std * r * cos(θ) + C_std) mod P | |
| /// Evaluates the polar form of the Elliptic Curve equation. | |
| /// | |
| /// Due to the mix of float and integer math, this function returns a pair: | |
| /// (LHS_value_mod_P, RHS_value_mod_P) | |
| /// | |
| /// # Arguments | |
| /// * `r` - The radial distance (must be a float). | |
| /// * `theta` - The angle in radians (must be a float). | |
| /// * `a_std`, `b_std`, `c_std` - Elliptic curve coefficients (u128). | |
| /// * `p` - The prime modulus P (u128). | |
| /// | |
| /// # Returns | |
| /// A tuple `(lhs_mod_p, rhs_mod_p)` where both are u128. | |
| fn evaluate_ecc_polar( | |
| r: f64, | |
| theta: f64, | |
| a_std: u128, | |
| b_std: u128, | |
| c_std: u128, | |
| p: u128, | |
| ) -> (u128, u128) { | |
| let cos_theta = theta.cos(); | |
| let sin_theta = theta.sin(); | |
| // --- 1. Calculate the Right-Hand Side (RHS) --- | |
| // RHS = A_std * r^3 * cos^3(θ) + B_std * r * cos(θ) + C_std | |
| // x-coordinate in Cartesian terms: x = r * cos(θ) | |
| let x_float = r * cos_theta; | |
| // Calculate terms using f64 first | |
| let term1_float = a_std as f64 * x_float.powi(3); | |
| let term2_float = b_std as f64 * x_float; | |
| let rhs_float = term1_float + term2_float + c_std as f64; | |
| // Convert RHS back to integer and apply modulo P | |
| // NOTE: This conversion involves significant precision loss/rounding. | |
| let rhs_integer = rhs_float.round().abs() as u128; // abs() because f64 can be negative | |
| let rhs_mod_p = rhs_integer % p; | |
| // --- 2. Calculate the Left-Hand Side (LHS) --- | |
| // LHS = r^2 * sin^2(θ) | |
| // y-coordinate in Cartesian terms: y = r * sin(θ) | |
| let y_float = r * sin_theta; | |
| let lhs_float = y_float.powi(2); | |
| // Convert LHS back to integer and apply modulo P | |
| let lhs_integer = lhs_float.round().abs() as u128; | |
| let lhs_mod_p = lhs_integer % p; | |
| (lhs_mod_p, rhs_mod_p) | |
| } | |
| fn main() { | |
| println!("--- Conceptual ECC Polar Evaluation (f64 + u128 Modulo) ---"); | |
| // ECC Parameters (same as previous example) | |
| let p: u128 = 34028236692093846346337460743176821145; | |
| let a_std: u128 = 25; | |
| let b_std: u128 = 100; | |
| let c_std: u128 = 15; | |
| // --- Test Point (r, theta) --- | |
| // This example chooses a point that, when converted to Cartesian, | |
| // is roughly close to the previous x_coord for scale comparison. | |
| let test_r: f64 = 1.8e37; | |
| let test_theta: f64 = PI / 4.0; // 45 degrees | |
| // --- EVALUATION --- | |
| let (lhs_result, rhs_result) = evaluate_ecc_polar( | |
| test_r, test_theta, a_std, b_std, c_std, p | |
| ); | |
| // Calculate the Cartesian x/y coordinates from the polar input | |
| let cartesian_x = test_r * test_theta.cos(); | |
| let cartesian_y = test_r * test_theta.sin(); | |
| println!("\nCurve Equation: r^2*sin^2(θ) = {}*r^3*cos^3(θ) + {}*r*cos(θ) + {} (mod P)", a_std, b_std, c_std); | |
| println!("P (Modulus): {}", p); | |
| println!("Test Point (r, θ): r={:.2e}, θ={:.4} rad", test_r, test_theta); | |
| println!("(Approx. Cartesian x, y): x={:.2e}, y={:.2e}", cartesian_x, cartesian_y); | |
| println!("\n--- Result ---"); | |
| println!("LHS (r^2*sin^2(θ)) mod P: {}", lhs_result); | |
| println!("RHS (A*x^3 + B*x + C) mod P: {}", rhs_result); | |
| // The point is on the curve IF lhs_result == rhs_result. | |
| let on_curve = if lhs_result == rhs_result { "YES" } else { "NO" }; | |
| println!("\nPoint is on the curve (LHS == RHS)? {}", on_curve); | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
https://play.rust-lang.org/?version=stable&mode=debug&edition=2024&gist=5bd6c3f398d920f84cadb2ffd7412d75