-
-
Save RandyMcMillan/bf6ee410ce083c0d63e6b55e48a46a68 to your computer and use it in GitHub Desktop.
faux_bdhke.rs
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| //// src/main.rs | |
| use std::collections::HashMap; | |
| // --- PLACEHOLDER TYPES (Replacing ECC Types) --- | |
| // In a real implementation, these would be Elliptic Curve Points or Scalars. | |
| type MintPrivateKey = u64; // k | |
| type MintPublicKey = u64; // K = k * G | |
| type UserSecret = u64; // x | |
| type RandomPoint = u64; // Y = hash_to_curve(x) | |
| type BlindingFactor = u64; // r | |
| type BlindedPoint = u64; // B' = Y + r * G | |
| type BlindedSignature = u64; // C' = k * B' | |
| type UnblindedSignature = u64; // C = k * Y | |
| // The Generator Point G is implicitly 1 for simple arithmetic. | |
| const GENERATOR_POINT: u64 = 1; | |
| // A large prime P would be used for modular arithmetic, but we'll omit it for simplicity. | |
| // --- 1. PLACEHOLDER CRYPTOGRAPHIC FUNCTIONS --- | |
| // These functions use simple addition/multiplication instead of complex ECC/Field operations. | |
| /// Placeholder for the hash_to_curve(x) function. | |
| /// In ECC: Y = hash_to_curve(x) | |
| fn hash_to_curve(x: UserSecret) -> RandomPoint { | |
| // Insecure placeholder: just a simple fixed hash function | |
| x.wrapping_add(42) | |
| } | |
| /// Placeholder for scalar multiplication (k * P). | |
| /// In ECC: ProjectivePoint = Scalar * ProjectivePoint | |
| fn scalar_mul(scalar: u64, point: u64) -> u64 { | |
| // Insecure placeholder: simple multiplication | |
| scalar.wrapping_mul(point) | |
| } | |
| /// Placeholder for point addition (P1 + P2). | |
| /// In ECC: ProjectivePoint = ProjectivePoint + ProjectivePoint | |
| fn point_add(p1: u64, p2: u64) -> u64 { | |
| // Insecure placeholder: simple addition | |
| p1.wrapping_add(p2) | |
| } | |
| /// Placeholder for point subtraction (P1 - P2). | |
| /// In ECC: ProjectivePoint = ProjectivePoint - ProjectivePoint | |
| fn point_sub(p1: u64, p2: u64) -> u64 { | |
| // Insecure placeholder: simple subtraction | |
| p1.wrapping_sub(p2) | |
| } | |
| // --- 2. Mint (Bob) Functions --- | |
| /// 1. Mint Bob publishes public key K = kG. | |
| fn mint_key_gen() -> (MintPrivateKey, MintPublicKey) { | |
| // In a real app, 'k' would be a secure random scalar, here we use a fixed value. | |
| let k: u64 = 7; | |
| let k_pub: u64 = scalar_mul(k, GENERATOR_POINT); // K = k * G | |
| (k, k_pub) | |
| } | |
| /// 4. Bob sends back to Alice blind signature C' = k * B'. | |
| fn mint_sign(k: MintPrivateKey, blinded_point: BlindedPoint) -> BlindedSignature { | |
| scalar_mul(k, blinded_point) // C' = k * B' | |
| } | |
| // --- 3. User (Alice) Functions --- | |
| /// 2. User Alice picks secret x and computes Y = hash_to_curve(x). | |
| fn alice_prepare_token() -> (UserSecret, RandomPoint, BlindingFactor) { | |
| // x is the secret key used for the ecash token | |
| let x: u64 = 101; | |
| let y = hash_to_curve(x); // Y = hash_to_curve(x) | |
| // r is the random blinding factor | |
| let r: u64 = 5; | |
| (x, y, r) | |
| } | |
| /// 3. Alice sends to Bob B' = Y + rG with r being a random blinding factor. | |
| fn alice_blind(y: RandomPoint, r: BlindingFactor) -> BlindedPoint { | |
| let r_g = scalar_mul(r, GENERATOR_POINT); // r * G | |
| point_add(y, r_g) // B' = Y + r * G | |
| } | |
| /// 5. Alice can calculate the unblinded signature as C' - rK = kY = C. | |
| fn alice_unblind( | |
| k_pub: MintPublicKey, | |
| r: BlindingFactor, | |
| blinded_signature: BlindedSignature, | |
| ) -> UnblindedSignature { | |
| let r_k = scalar_mul(r, k_pub); // r * K | |
| point_sub(blinded_signature, r_k) // C = C' - r * K | |
| } | |
| // --- 4. Spender (Carol) & Mint (Bob) Verification Functions --- | |
| /// 7. Carol sends (x, C) to Bob who then checks that k * hash_to_curve(x) = C. | |
| fn mint_verify(k: MintPrivateKey, x: UserSecret, c: UnblindedSignature) -> bool { | |
| let y = hash_to_curve(x); // Y = hash_to_curve(x) | |
| let c_expected = scalar_mul(k, y); // C_expected = k * Y | |
| c == c_expected | |
| } | |
| // --- 5. Main Execution Flow --- | |
| fn main() { | |
| println!("--- Blind Diffie-Hellman Key Exchange (BDHKE) Protocol Simulation (Insecure, stdlib-only) ---"); | |
| // MINT (BOB) SETUP | |
| let (k, k_pub) = mint_key_gen(); | |
| println!("\n1. Bob (Mint) Setup:"); | |
| println!(" Mint Private Key (k): {}", k); | |
| println!(" Mint Public Key (K = k * G): {}", k_pub); | |
| // ALICE PREPARES MINTING REQUEST | |
| let (x, y, r) = alice_prepare_token(); | |
| println!("\n2. Alice Preparation:"); | |
| println!(" User Secret (x): {}", x); | |
| println!(" Hashed Point (Y = hash_to_curve(x)): {}", y); | |
| println!(" Blinding Factor (r): {}", r); | |
| // ALICE BLINDS AND SENDS | |
| let b_prime = alice_blind(y, r); | |
| println!("\n3. Alice Blinds and Sends:"); | |
| println!(" Blinded Point (B' = Y + r*G): {}", b_prime); | |
| // BOB SIGNS BLINDED POINT | |
| let c_prime = mint_sign(k, b_prime); | |
| println!("\n4. Bob Signs (Blind Signature):"); | |
| println!(" Blinded Signature (C' = k * B'): {}", c_prime); | |
| // ALICE UNBLINDS | |
| let c = alice_unblind(k_pub, r, c_prime); | |
| println!("\n5. Alice Unblinds:"); | |
| println!(" Unblinded Signature (C = C' - r*K): {}", c); | |
| // Final ecash token: (x, C) | |
| // CAROL SPENDS / BOB VERIFIES | |
| let is_valid = mint_verify(k, x, c); | |
| println!("\n6. Carol Spends / Bob Verifies (Token: ({}, {})):", x, c); | |
| if is_valid { | |
| println!(" ✅ Verification successful: k * hash_to_curve(x) == C"); | |
| } else { | |
| println!(" ❌ Verification failed."); | |
| } | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
https://play.rust-lang.org/?version=stable&mode=debug&edition=2024&gist=fb2da17fbf754e75d2b86f998c7f1298