Last active
November 8, 2018 22:03
-
-
Save Redchards/7149e9ac87904b88a922efbc39fc24dc to your computer and use it in GitHub Desktop.
pytorch implementation of 1D convolutional NN
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
""" | |
Éditeur de Spyder | |
Ceci est un script temporaire. | |
""" | |
import logging | |
import torchtext.datasets as datasets | |
import torchtext.data as data | |
import torchtext | |
import torch.nn as nn | |
import torch | |
class Conv1D(nn.Module): | |
def __init__(self, in_channels, out_channels, stride, kernel_width): | |
super(Conv1D, self).__init__() | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.stride = stride | |
self.kernel_width = kernel_width | |
self.kernel = nn.Linear(kernel_width * in_channels, out_channels) | |
def forward(self, x): | |
l = [self.kernel(x[:, :, i - self.kernel_width: i].reshape(x.shape[0], self.in_channels * self.kernel_width)) for i in range(self.kernel_width, x.shape[2], self.stride)] | |
return torch.stack(l, dim=1) | |
logging.basicConfig() | |
# logger = logging.getLogger(« model ») | |
# logger.setLevel(level=logging.DEBUG) | |
# text | |
TEXT = data.Field(lower=True, include_lengths=False, batch_first=True) | |
LABEL = data.Field(sequential=False, is_target=True) | |
# make splits for data | |
train, val, test = datasets.sst.SST.splits(TEXT, LABEL) | |
# Use the vocabulary | |
wordemb = torchtext.vocab.GloVe("6B", dim=100) | |
# Build the vocabularies | |
# for labels, we use special_first to False so <unk> is last | |
# (to discard it) | |
TEXT.build_vocab(train, vectors=wordemb) | |
LABEL.build_vocab(train, specials_first=False) | |
train_iter, val_iter, test_iter = data.BucketIterator.splits( | |
(train, val, test), batch_size=10, device=0) | |
nn_embeddings = nn.Embedding.from_pretrained(TEXT.vocab.vectors) | |
model = torch.nn.Conv1d(100, 3, 1, 3) | |
loss = torch.nn.CrossEntropyLoss() | |
learning_rate = 0.01 | |
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) | |
for _ in range(100): | |
for i, batch in enumerate(train_iter): | |
# print(batch.text, batch.label) | |
# print(nn_embeddings(batch.text).shape) | |
print("Batch label num {}".format(batch.label.shape)) | |
optimizer.zero_grad() | |
d = nn_embeddings(batch.text).transpose(1, 2) | |
forward_pass = model(d).max(1)[0] | |
print(forward_pass) | |
print(batch.label) | |
err = loss(forward_pass, batch.label) | |
err.backward() | |
optimizer.step() | |
acc = sum([1 if forward_pass[i].max(0)[1] == batch.label[i] else 0 for i in range(forward_pass.shape[0])]) / \ | |
forward_pass.shape[0] | |
print("Epoch {} : Loss {:.4f}".format(i, err.mean().item())) | |
print("Accuracy {}".format(acc)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment