Created
December 14, 2020 20:54
-
-
Save ResidentMario/a7bd4dc60262e41e5211b48a92be0477 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| PandaModel( | |
| (enc): Sequential( | |
| (0): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False) | |
| (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| (2): ReLU(inplace=True) | |
| (3): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False) | |
| (4): Sequential( | |
| (0): Bottleneck( | |
| (conv1): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
| (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False) | |
| (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| (conv3): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
| (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| (relu): ReLU(inplace=True) | |
| (downsample): Sequential( | |
| (0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
| (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| ) | |
| (1): Bottleneck( | |
| (conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
| (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False) | |
| (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| (conv3): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
| (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| (relu): ReLU(inplace=True) | |
| ) | |
| (2): Bottleneck( | |
| (conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
| (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False) | |
| (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| (conv3): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
| (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| (relu): ReLU(inplace=True) | |
| ) | |
| ) | |
| (5): Sequential( | |
| (0): Bottleneck( | |
| (conv1): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
| (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=32, bias=False) | |
| (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| (conv3): Conv2d(256, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
| (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| (relu): ReLU(inplace=True) | |
| (downsample): Sequential( | |
| (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False) | |
| (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| ) | |
| (1): Bottleneck( | |
| (conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
| (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False) | |
| (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| (conv3): Conv2d(256, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
| (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| (relu): ReLU(inplace=True) | |
| ) | |
| (2): Bottleneck( | |
| (conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
| (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False) | |
| (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| (conv3): Conv2d(256, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
| (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| (relu): ReLU(inplace=True) | |
| ) | |
| (3): Bottleneck( | |
| (conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
| (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False) | |
| (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| (conv3): Conv2d(256, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
| (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| (relu): ReLU(inplace=True) | |
| ) | |
| ) | |
| (6): Sequential( | |
| (0): Bottleneck( | |
| (conv1): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
| (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=32, bias=False) | |
| (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| (conv3): Conv2d(512, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
| (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| (relu): ReLU(inplace=True) | |
| (downsample): Sequential( | |
| (0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False) | |
| (1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| ) | |
| (1): Bottleneck( | |
| (conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
| (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False) | |
| (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| (conv3): Conv2d(512, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
| (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| (relu): ReLU(inplace=True) | |
| ) | |
| (2): Bottleneck( | |
| (conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
| (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False) | |
| (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| (conv3): Conv2d(512, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
| (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| (relu): ReLU(inplace=True) | |
| ) | |
| (3): Bottleneck( | |
| (conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
| (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False) | |
| (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| (conv3): Conv2d(512, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
| (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| (relu): ReLU(inplace=True) | |
| ) | |
| (4): Bottleneck( | |
| (conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
| (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False) | |
| (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| (conv3): Conv2d(512, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
| (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| (relu): ReLU(inplace=True) | |
| ) | |
| (5): Bottleneck( | |
| (conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
| (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False) | |
| (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| (conv3): Conv2d(512, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
| (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| (relu): ReLU(inplace=True) | |
| ) | |
| ) | |
| (7): Sequential( | |
| (0): Bottleneck( | |
| (conv1): Conv2d(1024, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
| (bn1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| (conv2): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=32, bias=False) | |
| (bn2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| (conv3): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
| (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| (relu): ReLU(inplace=True) | |
| (downsample): Sequential( | |
| (0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False) | |
| (1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| ) | |
| (1): Bottleneck( | |
| (conv1): Conv2d(2048, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
| (bn1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| (conv2): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False) | |
| (bn2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| (conv3): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
| (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| (relu): ReLU(inplace=True) | |
| ) | |
| (2): Bottleneck( | |
| (conv1): Conv2d(2048, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
| (bn1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| (conv2): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False) | |
| (bn2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| (conv3): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
| (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| (relu): ReLU(inplace=True) | |
| ) | |
| ) | |
| ) | |
| (head): Sequential( | |
| (0): AdaptiveConcatPool2d( | |
| (ap): AdaptiveAvgPool2d(output_size=1) | |
| (mp): AdaptiveMaxPool2d(output_size=1) | |
| ) | |
| (1): Flatten(full=False) | |
| (2): Linear(in_features=4096, out_features=512, bias=True) | |
| (3): Mish() | |
| (4): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| (5): Dropout(p=0.5, inplace=False) | |
| (6): Linear(in_features=512, out_features=6, bias=True) | |
| ) | |
| ) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment