Last active
March 15, 2020 15:32
-
-
Save RishiSadhir/dbbd02231643ad41412b2171e0254ba3 to your computer and use it in GitHub Desktop.
OLS from scratch
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
# Core functions | |
def ols(X, y): | |
ret = np.dot(np.dot(np.linalg.inv(np.dot(X.transpose(), X)), X.transpose()), y) | |
return ret.tolist() | |
def se(arr): | |
return np.std(arr) / arr.size | |
def boot(X, y): | |
n = X.shape[0] | |
idx = np.arange(0, n-1) | |
idx = np.random.choice(idx, size = n, replace = True) | |
return X[idx,:], y[idx] | |
def boot_summary(boots): | |
ret = {} | |
ret["coef"] = np.apply_along_axis(np.mean, 0, boots) | |
ret["se"] = np.apply_along_axis(se, 0, boots) | |
return ret | |
def ols_boot(X, y, n_boots=1000): | |
boots = np.zeros(shape=(n_boots, X.shape[1])) | |
for idx_boot in range(0, n_boots): | |
x_boot, y_boot = boot(X, y) | |
boots[idx_boot,:] = ols(x_boot, y_boot) | |
return boot_summary(boots) | |
# Example | |
N = 1000 | |
x = np.random.normal([1, 100, 1000], [1,2,3], (N,3)) | |
x = np.column_stack([np.ones(x.shape[0]), x]) | |
y = np.matmul(x, [10, 10.5, 20.5, 40.5]) | |
ols_boot(x, y, 1000) | |
#> {'coef': array([ 9.99999926, 10.5 , 20.5 , 40.5 ]), | |
#> 'se': array([1.47045649e-09, 1.70255501e-13, 3.86609646e-13, 1.36142024e-12])} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment