Created
December 14, 2011 18:29
-
-
Save RoUS/1477838 to your computer and use it in GitHub Desktop.
Euler Challenge: maximum product from 5 consecutive digits in a 1000-digit integer
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#! /usr/bin/env ruby | |
# | |
# PROBLEM: | |
# Find the greatest product of five consecutive digits in the 1000-digit number. | |
# | |
# 73167176531330624919225119674426574742355349194934 | |
# 96983520312774506326239578318016984801869478851843 | |
# 85861560789112949495459501737958331952853208805511 | |
# 12540698747158523863050715693290963295227443043557 | |
# 66896648950445244523161731856403098711121722383113 | |
# 62229893423380308135336276614282806444486645238749 | |
# 30358907296290491560440772390713810515859307960866 | |
# 70172427121883998797908792274921901699720888093776 | |
# 65727333001053367881220235421809751254540594752243 | |
# 52584907711670556013604839586446706324415722155397 | |
# 53697817977846174064955149290862569321978468622482 | |
# 83972241375657056057490261407972968652414535100474 | |
# 82166370484403199890008895243450658541227588666881 | |
# 16427171479924442928230863465674813919123162824586 | |
# 17866458359124566529476545682848912883142607690042 | |
# 24219022671055626321111109370544217506941658960408 | |
# 07198403850962455444362981230987879927244284909188 | |
# 84580156166097919133875499200524063689912560717606 | |
# 05886116467109405077541002256983155200055935729725 | |
# 71636269561882670428252483600823257530420752963450 | |
# | |
# SOLUTION: | |
NUMBER = | |
'73167176531330624919225119674426574742355349194934' + | |
'96983520312774506326239578318016984801869478851843' + | |
'85861560789112949495459501737958331952853208805511' + | |
'12540698747158523863050715693290963295227443043557' + | |
'66896648950445244523161731856403098711121722383113' + | |
'62229893423380308135336276614282806444486645238749' + | |
'30358907296290491560440772390713810515859307960866' + | |
'70172427121883998797908792274921901699720888093776' + | |
'65727333001053367881220235421809751254540594752243' + | |
'52584907711670556013604839586446706324415722155397' + | |
'53697817977846174064955149290862569321978468622482' + | |
'83972241375657056057490261407972968652414535100474' + | |
'82166370484403199890008895243450658541227588666881' + | |
'16427171479924442928230863465674813919123162824586' + | |
'17866458359124566529476545682848912883142607690042' + | |
'24219022671055626321111109370544217506941658960408' + | |
'07198403850962455444362981230987879927244284909188' + | |
'84580156166097919133875499200524063689912560717606' + | |
'05886116467109405077541002256983155200055935729725' + | |
'71636269561882670428252483600823257530420752963450' | |
# WRITE YOUR CODE HERE | |
# | |
# This technique uses regular expressions to find the best solution. | |
# It starts by looking for any occurrences of /[9]{5}/ (five consecutive | |
# '9' numerals), then /[98]{5}/ (five digits of either 8 or 9), and | |
# so on. It stops as soon as it finds a pattern that has matches, and | |
# picks the best match by calculating the products. | |
# | |
itercount = 0 | |
maxproduct = 0 | |
digits = '987654321' | |
dcount = 1 | |
while (dcount < digits.length) | |
itercount += 1 | |
pattern = Regexp.new("[#{digits[0,dcount]}]{5}") | |
matches = NUMBER.scan(pattern) | |
dcount += 1 | |
next if (matches.empty?) | |
bestval = 0 | |
matches.each do |str| | |
val = str.split(//).map { |c| c.to_i }.inject(1) { |m,i| m *= i ; m } | |
bestval = [ bestval, val ].max | |
end | |
maxproduct = bestval | |
break | |
end | |
puts(maxproduct) | |
puts("Iterations: #{itercount}") | |
# | |
# The best case will find the solution in 1 iteration: when the number has | |
# one or more occurrences of '99999'. The worst case will require 8 iterations | |
# and occurs when the number is all zeroes. | |
# |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment