I hereby claim:
- I am robblackwell on github.
- I am robblackwell (https://keybase.io/robblackwell) on keybase.
- I have a public key ASCKTiK-mr2e19Jzs6EwX2MserBJYFoa0_EY1j7gEhXNUAo
To claim this, I am signing this object:
I hereby claim:
To claim this, I am signing this object:
/* | |
Si5351 VFO | |
By LA3PNA 27 March 2015 | |
Modified by NT7S 25 April 2015 | |
Modified to be Si5351 Arduino v2 compliant by NT7S 21 Nov 2016 | |
Added LiquidCrystal_I2C support, M0NIL, December 2020. |
using Glob | |
using CSVFiles | |
using DataFrames | |
filenames = glob("*.csv") | |
function load_dataframes(filenames) | |
df = DataFrame(CSVFiles.load(filenames[1])) | |
for filename in filenames[2:end] | |
df2 = DataFrame(CSVFiles.load(filename)) |
""" | |
column_vectors(A) | |
Given a two dimensional array `A` of size `m` x `n`, return an array | |
of `n` vectors being the columns in `A`. Each vector is of length `m`. | |
""" | |
function column_vectors(A) | |
m,n = size(A) | |
[A[:,i] for i in 1:n] |
using PyCall | |
@pyimport pickle | |
# This works for complex objects such as Scikit learn models. REB | |
# 20171129 | |
function mypickle(filename, obj) | |
out = open(filename,"w") | |
pickle.dump(obj, out) | |
close(out) |
""" | |
freedman_diaconis(x) | |
Estimates the required bin width for the distribution x. | |
Freedman, D. and Diaconis, P., 1981. On the histogram as a density | |
estimator: L 2 theory. Zeitschrift für Wahrscheinlichkeitstheorie und | |
verwandte Gebiete, 57(4), pp.453-476. | |
""" |
const MATLAB_EPOCH = Dates.DateTime(-0001,12,31) | |
""" | |
datenum(d::Dates.DateTime) | |
Converts a Julia DateTime to a MATLAB style DateNumber. | |
MATLAB represents time as DateNumber, a double precision floating | |
point number being the the number of days since January 0, 0000 |
using MAT | |
function mymatread(filename, varname) | |
file = matopen(filename) | |
x = read(file, varname) | |
close(file) | |
return x | |
end |
using PerceptualColourMaps | |
using Images | |
function myimagesc(A) | |
x = minimum(A) | |
y = maximum(A) | |
B = (A .- x) ./ (y - x) | |
imgc = applycolormap(B, cmap("R3")) # outputs a 3-dimensional array | |
imgc2 = colorview(RGB, permuteddimsview(imgc, (3,1,2))) | |
end |