-
-
Save RobertMyles/25194e66f903f6b1e615eb2e6a0ceee4 to your computer and use it in GitHub Desktop.
Code for drawing the forking data gardens in Chapter 2 of "Statistical Rethinking" textbook
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# functions for plotting garden of forking data plots | |
library(rethinking) | |
polar2screen <- function( dist, origin, theta ) { | |
## takes dist, angle and origin and returns x and y of destination point | |
vx <- cos(theta) * dist; | |
vy <- sin(theta) * dist; | |
c( origin[1]+vx , origin[2]+vy ); | |
} | |
screen2polar <- function( origin, dest ) { | |
## takes two points and returns distance and angle, from origin to dest | |
vx <- dest[1] - origin[1]; | |
vy <- dest[2] - origin[2]; | |
dist <- sqrt( vx*vx + vy*vy ); | |
theta <- asin( abs(vy) / dist ); | |
## correct for quadrant | |
if( vx < 0 && vy < 0 ) theta <- pi + theta; # lower-left | |
if( vx < 0 && vy > 0 ) theta <- pi - theta; # upper-left | |
if( vx > 0 && vy < 0 ) theta <- 2*pi - theta; # lower-right | |
if( vx < 0 && vy==0 ) theta <- pi; | |
if( vx==0 && vy < 0 ) theta <- 3*pi/2; | |
## return angle and dist | |
c( theta, dist ); | |
} | |
point.polar <- function(dist,theta,origin=c(0,0),...) { | |
# angle theta is in radians | |
pt <- polar2screen(dist,origin,theta) | |
points( pt[1] , pt[2] , ... ) | |
invisible( pt ) | |
} | |
line.polar <- function(dist,theta,origin=c(0,0),...) { | |
# dist should be vector of length 2 with start and end points | |
# theta is angle | |
pt1 <- polar2screen(dist[1],origin,theta) | |
pt2 <- polar2screen(dist[2],origin,theta) | |
lines( c(pt1[1],pt2[1]), c(pt1[2],pt2[2]) , ... ) | |
} | |
line.short <- function(x,y,short=0.1,...) { | |
# shortens the line segment, but retains angle and placement | |
pt1 <- c(x[1],y[1]) | |
pt2 <- c(x[2],y[2]) | |
theta <- screen2polar( pt1 , pt2 )[1] | |
dist <- screen2polar( pt1 , pt2 )[2] | |
q1 <- polar2screen( short , pt1 , theta ) | |
q2 <- polar2screen( dist-short , pt1 , theta ) | |
lines( c(q1[1],q2[1]) , c(q1[2],q2[2]) , ... ) | |
} | |
wedge <- function(dist,start,end,pt,hedge=0.1,alpha,lwd=2,...) { | |
# start: start angle of wedge | |
# end: end angle of wedge | |
# pt: vector of point bg colors | |
n <- length(pt) | |
points.save <- matrix(NA,nrow=n,ncol=2) # x,y columns | |
span <- abs(end-start) | |
span2 <- span*(1 - 2*hedge) | |
origin <- start + span*hedge | |
gap <- span2/n | |
theta <- origin + gap/2 | |
border <- rep("black",length(pt)) | |
if ( !missing(alpha) ) { | |
pt <- sapply( 1:length(pt) , function(i) col.alpha(pt[i],alpha[i]) ) | |
border <- sapply( 1:length(pt) , function(i) col.alpha(border[i],alpha[i]) ) | |
} | |
for ( i in 1:n ) { | |
points.save[i,] <- point.polar( dist , theta , pch=21 , lwd=lwd , bg=pt[i] , col=border[i] , ... ) | |
theta <- theta + gap | |
} | |
points.save | |
} | |
####### | |
# garden draws paths using recursion | |
garden <- function( arc , possibilities , data , alpha.fade = 0.25 , hedge=0.1 , hedge1=0 , newplot=TRUE , plot.origin=FALSE , cex=1.5 , lwd=2 , adj.cex , adj.lwd , ring_dist , ... ) { | |
poss.cols <- ifelse( possibilities==1 , rangi2 , "white" ) | |
if ( missing(adj.cex) ) adj.cex=rep(1,length(data)) | |
if ( missing(adj.lwd) ) adj.lwd=rep(1,length(data)) | |
if ( newplot==TRUE ) { | |
# empty plot | |
par(mgp = c(1.5, 0.5, 0), mar = c(1, 1, 1, 1) + 0.1, tck = -0.02) | |
plot( NULL , xlim=c(-1,1) , ylim=c(-1,1) , bty="n" , xaxt="n" , yaxt="n" , xlab="" , ylab="" ) | |
} | |
if ( plot.origin==TRUE ) point.polar( 0 , 0 , pch=16 ) | |
N <- length(data) | |
n_poss <- length(possibilities) | |
# draw rings | |
# compute distance out for each ring | |
# use golden ratio 1.618 for each successive ring | |
goldrat <- 1.618 | |
if ( missing(ring_dist) ) { | |
ring_dist <- rep(1,N) | |
if ( N>1 ) | |
for ( i in 2:N ) ring_dist[i] <- ring_dist[i-1]*goldrat | |
ring_dist <- ring_dist / sum(ring_dist) | |
ring_dist <- cumsum(ring_dist) | |
} | |
if ( length(alpha.fade)==1 ) alpha.fade <- rep(alpha.fade,N) | |
draw_wedge <- function(r,hit_prior,arc2,hedge=0.1,hedge1=0,lines_to) { | |
# is each path clear? | |
hit <- hit_prior * ifelse( possibilities==data[r] , 1 , 0 ) | |
# transparency for blocked paths | |
alpha <- ifelse( hit , 1 , alpha.fade[r] ) | |
# draw wedge | |
hedge_use <- ifelse( r==1 , hedge1 , hedge ) | |
pts <- wedge( ring_dist[r] , arc2[1] , arc2[2] , poss.cols , hedge=hedge_use , alpha=alpha , cex=cex*adj.cex[r] , lwd=lwd*adj.lwd[r] ) | |
if ( N > r ) { | |
# draw next layer | |
span <- abs( arc2[1] - arc2[2] ) / n_poss | |
for ( j in 1:n_poss ) { | |
# for each possibility, draw the next wedge | |
# recursion handles deeper wedges | |
new_arc <- c( arc2[1]+span*(j-1) , arc2[1]+span*j ) | |
pts2 <- draw_wedge(r+1,hit[j],new_arc,hedge,lines_to=pts[j,]) | |
}#j | |
}# N>r | |
# draw lines back to parent point | |
if ( !missing(lines_to) ) { | |
for ( k in 1:n_poss ) { | |
alpha_l <- ifelse( hit==1 , 1 , alpha.fade[r] ) | |
line.short( c(lines_to[1],pts[k,1]) , c(lines_to[2],pts[k,2]) , lwd=lwd*adj.lwd[r] , short=0.04 , col=col.alpha("black",alpha_l[k]) ) | |
} | |
} # lines_to | |
return(pts) | |
} | |
pts1 <- draw_wedge(1,1,arc=arc,hedge=hedge,lines_to=c(0,0)) | |
invisible(pts1) | |
} | |
## | |
goldrat <- 1.618 | |
ring_dist <- rep(1,3) | |
for ( i in 2:3 ) ring_dist[i] <- ring_dist[i-1]*goldrat | |
ring_dist <- ring_dist / sum(ring_dist) | |
ring_dist <- cumsum(ring_dist) | |
dat <- c(1,0,1) | |
arc <- c( 0 , pi ) | |
garden( | |
arc = arc, | |
possibilities = c(0,0,0,1), | |
data = dat, | |
hedge = 0.05, | |
ring_dist=ring_dist, | |
alpha.fade=0.35 | |
) | |
#### | |
# compare {1,0,0,0}, {1,1,0,0} and {1,1,1,0} | |
dat <- c(1,0,1) | |
arc <- c( 0 , pi ) | |
garden( | |
arc = arc, | |
possibilities = c(0,0,0,1), | |
data = dat, | |
hedge = 0.05, | |
ring_dist=ring_dist, | |
alpha.fade=0.35 | |
) | |
#### | |
# second plot | |
# compare {1,0,0,0} to {1,1,1,0} | |
dat <- c(1,0,1) | |
arc <- c( pi/2 , pi/2+pi ) | |
garden( | |
arc = arc, | |
possibilities = c(0,0,0,1), | |
data = dat, | |
hedge = 0.05, | |
adj.cex=c(1.2,1,0.8) | |
) | |
arc <- c( arc[2] , arc[2] + pi ) | |
garden( | |
arc = arc, | |
possibilities = c(0,0,1,1), | |
data = dat, | |
hedge = 0.05, | |
newplot=FALSE, | |
adj.cex=c(1.2,1,0.8) | |
) | |
#### | |
# third plot | |
# three options: {1,0,0,0}, {1,1,0,0}, {1,1,1,0} | |
dat <- c(1,0,1) | |
ac <- c(1.2,0.9,0.6) | |
arc <- c( pi/2 , pi/2 + (2/3)*pi ) | |
garden( | |
arc = arc, | |
possibilities = c(1,0,0,0), | |
data = dat, | |
hedge = 0.05, | |
adj.cex=ac | |
) | |
arc <- c( arc[2] , arc[2] + (2/3)*pi ) | |
garden( | |
arc = arc, | |
possibilities = c(1,1,0,0), | |
data = dat, | |
hedge = 0.05, | |
newplot=FALSE, | |
adj.cex=ac | |
) | |
arc <- c( arc[2] , arc[2] + (2/3)*pi ) | |
garden( | |
arc = arc, | |
possibilities = c(1,1,1,0), | |
data = dat, | |
hedge = 0.05, | |
newplot=FALSE, | |
adj.cex=ac | |
) | |
line.polar( c(0,2) , pi/2 , lwd=1 ) | |
line.polar( c(0,2) , pi/2 + (2/3)*pi , lwd=1 ) | |
line.polar( c(0,2) , pi/2 + 2*(2/3)*pi , lwd=1 ) | |
##### | |
# single possibility out of 10 plot | |
dat <- c(1,0,1) | |
ac <- c(1.2,0.9,0.65) | |
al <- c(1,1,0.6) | |
n <- 6 | |
nblue <- 3 | |
arc <- c( pi/2 , pi/2 + 2*pi ) | |
garden( | |
arc = arc, | |
possibilities = c(rep(1,nblue),rep(0,n-nblue)), | |
data = dat, | |
hedge = 0.05, | |
adj.cex=ac, | |
adj.lwd=al | |
) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment