-
-
Save Robsteranium/2662186 to your computer and use it in GitHub Desktop.
JavaScript library for calculating critical values and upper probabilities of common statistical distributions
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* | |
* NAME | |
* | |
* statistics-distributions.js - JavaScript library for calculating | |
* critical values and upper probabilities of common statistical | |
* distributions | |
* | |
* SYNOPSIS | |
* | |
* | |
* // Chi-squared-crit (2 degrees of freedom, 95th percentile = 0.05 level | |
* chisqrdistr(2, .05) | |
* | |
* // u-crit (95th percentile = 0.05 level) | |
* udistr(.05); | |
* | |
* // t-crit (1 degree of freedom, 99.5th percentile = 0.005 level) | |
* tdistr(1,.005); | |
* | |
* // F-crit (1 degree of freedom in numerator, 3 degrees of freedom | |
* // in denominator, 99th percentile = 0.01 level) | |
* fdistr(1,3,.01); | |
* | |
* // upper probability of the u distribution (u = -0.85): Q(u) = 1-G(u) | |
* uprob(-0.85); | |
* | |
* // upper probability of the chi-square distribution | |
* // (3 degrees of freedom, chi-squared = 6.25): Q = 1-G | |
* chisqrprob(3,6.25); | |
* | |
* // upper probability of the t distribution | |
* // (3 degrees of freedom, t = 6.251): Q = 1-G | |
* tprob(3,6.251); | |
* | |
* // upper probability of the F distribution | |
* // (3 degrees of freedom in numerator, 5 degrees of freedom in | |
* // denominator, F = 6.25): Q = 1-G | |
* fprob(3,5,.625); | |
* | |
* | |
* DESCRIPTION | |
* | |
* This library calculates percentage points (5 significant digits) of the u | |
* (standard normal) distribution, the student's t distribution, the | |
* chi-square distribution and the F distribution. It can also calculate the | |
* upper probability (5 significant digits) of the u (standard normal), the | |
* chi-square, the t and the F distribution. | |
* | |
* These critical values are needed to perform statistical tests, like the u | |
* test, the t test, the F test and the chi-squared test, and to calculate | |
* confidence intervals. | |
* | |
* If you are interested in more precise algorithms you could look at: | |
* StatLib: http://lib.stat.cmu.edu/apstat/ ; | |
* Applied Statistics Algorithms by Griffiths, P. and Hill, I.D. | |
* , Ellis Horwood: Chichester (1985) | |
* | |
* BUGS | |
* | |
* This port was produced from the Perl module Statistics::Distributions | |
* that has had no bug reports in several years. If you find a bug then | |
* please double-check that JavaScript does not thing the numbers you are | |
* passing in are strings. (You can subtract 0 from them as you pass them | |
* in so that "5" is properly understood to be 5.) If you have passed in a | |
* number then please contact the author | |
* | |
* AUTHOR | |
* | |
* Ben Tilly <[email protected]> | |
* | |
* Originl Perl version by Michael Kospach <[email protected]> | |
* | |
* Nice formating, simplification and bug repair by Matthias Trautner Kromann | |
* <[email protected]> | |
* | |
* COPYRIGHT | |
* | |
* Copyright 2008 Ben Tilly. | |
* | |
* This library is free software; you can redistribute it and/or modify it | |
* under the same terms as Perl itself. This means under either the Perl | |
* Artistic License or the GPL v1 or later. | |
*/ | |
var SIGNIFICANT = 5; // number of significant digits to be returned | |
function chisqrdistr ($n, $p) { | |
if ($n <= 0 || Math.abs($n) - Math.abs(integer($n)) != 0) { | |
throw("Invalid n: $n\n"); /* degree of freedom */ | |
} | |
if ($p <= 0 || $p > 1) { | |
throw("Invalid p: $p\n"); | |
} | |
return precision_string(_subchisqr($n-0, $p-0)); | |
} | |
function udistr ($p) { | |
if ($p > 1 || $p <= 0) { | |
throw("Invalid p: $p\n"); | |
} | |
return precision_string(_subu($p-0)); | |
} | |
function tdistr ($n, $p) { | |
if ($n <= 0 || Math.abs($n) - Math.abs(integer($n)) != 0) { | |
throw("Invalid n: $n\n"); | |
} | |
if ($p <= 0 || $p >= 1) { | |
throw("Invalid p: $p\n"); | |
} | |
return precision_string(_subt($n-0, $p-0)); | |
} | |
function fdistr ($n, $m, $p) { | |
if (($n<=0) || ((Math.abs($n)-(Math.abs(integer($n))))!=0)) { | |
throw("Invalid n: $n\n"); /* first degree of freedom */ | |
} | |
if (($m<=0) || ((Math.abs($m)-(Math.abs(integer($m))))!=0)) { | |
throw("Invalid m: $m\n"); /* second degree of freedom */ | |
} | |
if (($p<=0) || ($p>1)) { | |
throw("Invalid p: $p\n"); | |
} | |
return precision_string(_subf($n-0, $m-0, $p-0)); | |
} | |
function uprob ($x) { | |
return precision_string(_subuprob($x-0)); | |
} | |
function chisqrprob ($n,$x) { | |
if (($n <= 0) || ((Math.abs($n) - (Math.abs(integer($n)))) != 0)) { | |
throw("Invalid n: $n\n"); /* degree of freedom */ | |
} | |
return precision_string(_subchisqrprob($n-0, $x-0)); | |
} | |
function tprob ($n, $x) { | |
if (($n <= 0) || ((Math.abs($n) - Math.abs(integer($n))) !=0)) { | |
throw("Invalid n: $n\n"); /* degree of freedom */ | |
} | |
return precision_string(_subtprob($n-0, $x-0)); | |
} | |
function fprob ($n, $m, $x) { | |
if (($n<=0) || ((Math.abs($n)-(Math.abs(integer($n))))!=0)) { | |
throw("Invalid n: $n\n"); /* first degree of freedom */ | |
} | |
if (($m<=0) || ((Math.abs($m)-(Math.abs(integer($m))))!=0)) { | |
throw("Invalid m: $m\n"); /* second degree of freedom */ | |
} | |
return precision_string(_subfprob($n-0, $m-0, $x-0)); | |
} | |
function _subfprob ($n, $m, $x) { | |
var $p; | |
if ($x<=0) { | |
$p=1; | |
} else if ($m % 2 == 0) { | |
var $z = $m / ($m + $n * $x); | |
var $a = 1; | |
for (var $i = $m - 2; $i >= 2; $i -= 2) { | |
$a = 1 + ($n + $i - 2) / $i * $z * $a; | |
} | |
$p = 1 - Math.pow((1 - $z), ($n / 2) * $a); | |
} else if ($n % 2 == 0) { | |
var $z = $n * $x / ($m + $n * $x); | |
var $a = 1; | |
for (var $i = $n - 2; $i >= 2; $i -= 2) { | |
$a = 1 + ($m + $i - 2) / $i * $z * $a; | |
} | |
$p = Math.pow((1 - $z), ($m / 2)) * $a; | |
} else { | |
var $y = Math.atan2(Math.sqrt($n * $x / $m), 1); | |
var $z = Math.pow(Math.sin($y), 2); | |
var $a = ($n == 1) ? 0 : 1; | |
for (var $i = $n - 2; $i >= 3; $i -= 2) { | |
$a = 1 + ($m + $i - 2) / $i * $z * $a; | |
} | |
var $b = Math.PI; | |
for (var $i = 2; $i <= $m - 1; $i += 2) { | |
$b *= ($i - 1) / $i; | |
} | |
var $p1 = 2 / $b * Math.sin($y) * Math.pow(Math.cos($y), $m) * $a; | |
$z = Math.pow(Math.cos($y), 2); | |
$a = ($m == 1) ? 0 : 1; | |
for (var $i = $m-2; $i >= 3; $i -= 2) { | |
$a = 1 + ($i - 1) / $i * $z * $a; | |
} | |
$p = max(0, $p1 + 1 - 2 * $y / Math.PI | |
- 2 / Math.PI * Math.sin($y) * Math.cos($y) * $a); | |
} | |
return $p; | |
} | |
function _subchisqrprob ($n,$x) { | |
var $p; | |
if ($x <= 0) { | |
$p = 1; | |
} else if ($n > 100) { | |
$p = _subuprob((Math.pow(($x / $n), 1/3) | |
- (1 - 2/9/$n)) / Math.sqrt(2/9/$n)); | |
} else if ($x > 400) { | |
$p = 0; | |
} else { | |
var $a; | |
var $i; | |
var $i1; | |
if (($n % 2) != 0) { | |
$p = 2 * _subuprob(Math.sqrt($x)); | |
$a = Math.sqrt(2/Math.PI) * Math.exp(-$x/2) / Math.sqrt($x); | |
$i1 = 1; | |
} else { | |
$p = $a = Math.exp(-$x/2); | |
$i1 = 2; | |
} | |
for ($i = $i1; $i <= ($n-2); $i += 2) { | |
$a *= $x / $i; | |
$p += $a; | |
} | |
} | |
return $p; | |
} | |
function _subu ($p) { | |
var $y = -Math.log(4 * $p * (1 - $p)); | |
var $x = Math.sqrt( | |
$y * (1.570796288 | |
+ $y * (.03706987906 | |
+ $y * (-.8364353589E-3 | |
+ $y *(-.2250947176E-3 | |
+ $y * (.6841218299E-5 | |
+ $y * (0.5824238515E-5 | |
+ $y * (-.104527497E-5 | |
+ $y * (.8360937017E-7 | |
+ $y * (-.3231081277E-8 | |
+ $y * (.3657763036E-10 | |
+ $y *.6936233982E-12))))))))))); | |
if ($p>.5) | |
$x = -$x; | |
return $x; | |
} | |
function _subuprob ($x) { | |
var $p = 0; /* if ($absx > 100) */ | |
var $absx = Math.abs($x); | |
if ($absx < 1.9) { | |
$p = Math.pow((1 + | |
$absx * (.049867347 | |
+ $absx * (.0211410061 | |
+ $absx * (.0032776263 | |
+ $absx * (.0000380036 | |
+ $absx * (.0000488906 | |
+ $absx * .000005383)))))), -16)/2; | |
} else if ($absx <= 100) { | |
for (var $i = 18; $i >= 1; $i--) { | |
$p = $i / ($absx + $p); | |
} | |
$p = Math.exp(-.5 * $absx * $absx) | |
/ Math.sqrt(2 * Math.PI) / ($absx + $p); | |
} | |
if ($x<0) | |
$p = 1 - $p; | |
return $p; | |
} | |
function _subt ($n, $p) { | |
if ($p >= 1 || $p <= 0) { | |
throw("Invalid p: $p\n"); | |
} | |
if ($p == 0.5) { | |
return 0; | |
} else if ($p < 0.5) { | |
return - _subt($n, 1 - $p); | |
} | |
var $u = _subu($p); | |
var $u2 = Math.pow($u, 2); | |
var $a = ($u2 + 1) / 4; | |
var $b = ((5 * $u2 + 16) * $u2 + 3) / 96; | |
var $c = (((3 * $u2 + 19) * $u2 + 17) * $u2 - 15) / 384; | |
var $d = ((((79 * $u2 + 776) * $u2 + 1482) * $u2 - 1920) * $u2 - 945) | |
/ 92160; | |
var $e = (((((27 * $u2 + 339) * $u2 + 930) * $u2 - 1782) * $u2 - 765) * $u2 | |
+ 17955) / 368640; | |
var $x = $u * (1 + ($a + ($b + ($c + ($d + $e / $n) / $n) / $n) / $n) / $n); | |
if ($n <= Math.pow(log10($p), 2) + 3) { | |
var $round; | |
do { | |
var $p1 = _subtprob($n, $x); | |
var $n1 = $n + 1; | |
var $delta = ($p1 - $p) | |
/ Math.exp(($n1 * Math.log($n1 / ($n + $x * $x)) | |
+ Math.log($n/$n1/2/Math.PI) - 1 | |
+ (1/$n1 - 1/$n) / 6) / 2); | |
$x += $delta; | |
$round = round_to_precision($delta, Math.abs(integer(log10(Math.abs($x))-4))); | |
} while (($x) && ($round != 0)); | |
} | |
return $x; | |
} | |
function _subtprob ($n, $x) { | |
var $a; | |
var $b; | |
var $w = Math.atan2($x / Math.sqrt($n), 1); | |
var $z = Math.pow(Math.cos($w), 2); | |
var $y = 1; | |
for (var $i = $n-2; $i >= 2; $i -= 2) { | |
$y = 1 + ($i-1) / $i * $z * $y; | |
} | |
if ($n % 2 == 0) { | |
$a = Math.sin($w)/2; | |
$b = .5; | |
} else { | |
$a = ($n == 1) ? 0 : Math.sin($w)*Math.cos($w)/Math.PI; | |
$b= .5 + $w/Math.PI; | |
} | |
return max(0, 1 - $b - $a * $y); | |
} | |
function _subf ($n, $m, $p) { | |
var $x; | |
if ($p >= 1 || $p <= 0) { | |
throw("Invalid p: $p\n"); | |
} | |
if ($p == 1) { | |
$x = 0; | |
} else if ($m == 1) { | |
$x = 1 / Math.pow(_subt($n, 0.5 - $p / 2), 2); | |
} else if ($n == 1) { | |
$x = Math.pow(_subt($m, $p/2), 2); | |
} else if ($m == 2) { | |
var $u = _subchisqr($m, 1 - $p); | |
var $a = $m - 2; | |
$x = 1 / ($u / $m * (1 + | |
(($u - $a) / 2 + | |
(((4 * $u - 11 * $a) * $u + $a * (7 * $m - 10)) / 24 + | |
(((2 * $u - 10 * $a) * $u + $a * (17 * $m - 26)) * $u | |
- $a * $a * (9 * $m - 6) | |
)/48/$n | |
)/$n | |
)/$n)); | |
} else if ($n > $m) { | |
$x = 1 / _subf2($m, $n, 1 - $p) | |
} else { | |
$x = _subf2($n, $m, $p) | |
} | |
return $x; | |
} | |
function _subf2 ($n, $m, $p) { | |
var $u = _subchisqr($n, $p); | |
var $n2 = $n - 2; | |
var $x = $u / $n * | |
(1 + | |
(($u - $n2) / 2 + | |
(((4 * $u - 11 * $n2) * $u + $n2 * (7 * $n - 10)) / 24 + | |
(((2 * $u - 10 * $n2) * $u + $n2 * (17 * $n - 26)) * $u | |
- $n2 * $n2 * (9 * $n - 6)) / 48 / $m) / $m) / $m); | |
var $delta; | |
do { | |
var $z = Math.exp( | |
(($n+$m) * Math.log(($n+$m) / ($n * $x + $m)) | |
+ ($n - 2) * Math.log($x) | |
+ Math.log($n * $m / ($n+$m)) | |
- Math.log(4 * Math.PI) | |
- (1/$n + 1/$m - 1/($n+$m))/6 | |
)/2); | |
$delta = (_subfprob($n, $m, $x) - $p) / $z; | |
$x += $delta; | |
} while (Math.abs($delta)>3e-4); | |
return $x; | |
} | |
function _subchisqr ($n, $p) { | |
var $x; | |
if (($p > 1) || ($p <= 0)) { | |
throw("Invalid p: $p\n"); | |
} else if ($p == 1){ | |
$x = 0; | |
} else if ($n == 1) { | |
$x = Math.pow(_subu($p / 2), 2); | |
} else if ($n == 2) { | |
$x = -2 * Math.log($p); | |
} else { | |
var $u = _subu($p); | |
var $u2 = $u * $u; | |
$x = max(0, $n + Math.sqrt(2 * $n) * $u | |
+ 2/3 * ($u2 - 1) | |
+ $u * ($u2 - 7) / 9 / Math.sqrt(2 * $n) | |
- 2/405 / $n * ($u2 * (3 *$u2 + 7) - 16)); | |
if ($n <= 100) { | |
var $x0; | |
var $p1; | |
var $z; | |
do { | |
$x0 = $x; | |
if ($x < 0) { | |
$p1 = 1; | |
} else if ($n>100) { | |
$p1 = _subuprob((Math.pow(($x / $n), (1/3)) - (1 - 2/9/$n)) | |
/ Math.sqrt(2/9/$n)); | |
} else if ($x>400) { | |
$p1 = 0; | |
} else { | |
var $i0 | |
var $a; | |
if (($n % 2) != 0) { | |
$p1 = 2 * _subuprob(Math.sqrt($x)); | |
$a = Math.sqrt(2/Math.PI) * Math.exp(-$x/2) / Math.sqrt($x); | |
$i0 = 1; | |
} else { | |
$p1 = $a = Math.exp(-$x/2); | |
$i0 = 2; | |
} | |
for (var $i = $i0; $i <= $n-2; $i += 2) { | |
$a *= $x / $i; | |
$p1 += $a; | |
} | |
} | |
$z = Math.exp((($n-1) * Math.log($x/$n) - Math.log(4*Math.PI*$x) | |
+ $n - $x - 1/$n/6) / 2); | |
$x += ($p1 - $p) / $z; | |
$x = round_to_precision($x, 5); | |
} while (($n < 31) && (Math.abs($x0 - $x) > 1e-4)); | |
} | |
} | |
return $x; | |
} | |
function log10 ($n) { | |
return Math.log($n) / Math.log(10); | |
} | |
function max () { | |
var $max = arguments[0]; | |
for (var $i = 0; i < arguments.length; i++) { | |
if ($max < arguments[$i]) | |
$max = arguments[$i]; | |
} | |
return $max; | |
} | |
function min () { | |
var $min = arguments[0]; | |
for (var $i = 0; i < arguments.length; i++) { | |
if ($min > arguments[$i]) | |
$min = arguments[$i]; | |
} | |
return $min; | |
} | |
function precision ($x) { | |
return Math.abs(integer(log10(Math.abs($x)) - SIGNIFICANT)); | |
} | |
function precision_string ($x) { | |
if ($x) { | |
return round_to_precision($x, precision($x)); | |
} else { | |
return "0"; | |
} | |
} | |
function round_to_precision ($x, $p) { | |
$x = $x * Math.pow(10, $p); | |
$x = Math.round($x); | |
return $x / Math.pow(10, $p); | |
} | |
function integer ($i) { | |
if ($i > 0) | |
return Math.floor($i); | |
else | |
return Math.ceil($i); | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Hi
Why the tprob(5,0) returns 0?