Created
September 3, 2024 22:43
-
-
Save RohanAwhad/c0b59976cbcccc9a9dac793c54b25bd7 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from transformers import AutoTokenizer, AutoModel | |
import torch | |
# MODEL CKPT is downloaded from: "jinaai/jina-embeddings-v2-base-en" # has context len of 8192 | |
MODEL_CKPT = "/Users/rohan/3_Resources/ai_models/jina-embeddings-v2-base-en" | |
def recursive_splitter(text: str, separators: list[str], chunk_size: int) -> list[str]: | |
if len(separators) == 0: | |
words = text.strip().split(' ') | |
return [' '.join(words[i:i+chunk_size]) for i in range(0, len(words), chunk_size)] | |
ret = [] | |
first_sep = separators[0] | |
for chunk in text.split(first_sep): ret.extend(recursive_splitter(chunk, separators[1:], chunk_size)) | |
return ret | |
def embed_using_late_chunking(chunks): | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_CKPT) # this simple BERT tokenizer | |
inp_tokens = [x[1:-1] for x in tokenizer(chunks)['input_ids']] # removing CLS and SEP token from start and end of each chunk | |
offsets = [1] | |
all_tokens = [tokenizer.cls_token_id] | |
for toks in inp_tokens: | |
offsets.append(offsets[-1] + len(toks)) | |
all_tokens.extend(toks) | |
all_tokens.append(tokenizer.sep_token_id) | |
model = AutoModel.from_pretrained(MODEL_CKPT, trust_remote_code=True) | |
model.eval() | |
with torch.no_grad(): outputs = model(input_ids=torch.tensor(all_tokens).unsqueeze(-1)) | |
return [outputs.last_hidden_state[0, i:j, :].mean(dim=-2).detach().numpy().tolist() for i, j in zip(offsets, offsets[1:])] |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Usage Example: