Created
January 21, 2026 05:34
-
-
Save Rohit-554/fe35ebd085e94023ee6ee4f79c2ca246 to your computer and use it in GitHub Desktop.
unsupervisedLearning.kt
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| package io.jadu.nivi.ai | |
| import org.apache.commons.csv.CSVFormat | |
| import smile.anomaly.IsolationForest | |
| import smile.base.cart.SplitRule | |
| import smile.data.formula.Formula | |
| import smile.io.Read | |
| import smile.nlp.tokenizer.SimpleTokenizer | |
| fun main() { | |
| // --- Load Data --- | |
| val format = CSVFormat.DEFAULT.builder() | |
| .setHeader() | |
| .setSkipHeaderRecord(true) | |
| .get() | |
| val irisData = Read.csv("server/src/main/kotlin/io/jadu/nivi/ai/iris_d.csv", format) | |
| // --- Prepare Data --- | |
| val formula = Formula.lhs("class") | |
| val x = formula.x(irisData).toArray() | |
| println("Training Isolation Forest...") | |
| // Fit the model | |
| val model = IsolationForest.fit(x) | |
| // --- Test Data --- | |
| val normalFlower = doubleArrayOf(5.1, 3.5, 1.4, 0.2) | |
| val mutantFlower = doubleArrayOf(15.0, 10.0, 15.0, 10.0) | |
| // Score > 0.5 usually means "Anomaly". | |
| // Score < 0.5 usually means "Normal". | |
| val normalScore = model.score(normalFlower) | |
| val mutantScore = model.score(mutantFlower) | |
| println("\n--- Results ---") | |
| println("Normal Flower Score: $normalScore") | |
| if (normalScore > 0.5) println("-> Verdict: ANOMALY") else println("-> Verdict: Normal") | |
| println("\nMutant Flower Score: $mutantScore") | |
| if (mutantScore > 0.5) println("-> Verdict: ANOMALY") else println("-> Verdict: Normal") | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment