Created
May 21, 2017 17:32
-
-
Save Rotsor/09540971f7b0874755526e0e0ce235bc to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module problem2 where | |
-- see https://np.reddit.com/r/DailyProver/comments/6brksy/infinite_valleys_and_the_limited_principle_of/ | |
open import Data.Nat as Nat | |
import Data.Nat.Properties as NatProp | |
open import Data.Sum | |
open import Data.Product | |
open import Relation.Binary.PropositionalEquality | |
open import Relation.Nullary | |
open import Data.Empty | |
open import Data.Bool | |
open import Relation.Binary | |
open DecTotalOrder Nat.decTotalOrder using () renaming (refl to ≤-refl; trans to ≤-trans) | |
Decreasing : (f : ℕ → ℕ) → Set | |
Decreasing f = ∀ n → f (suc n) ≤ f n | |
LPO = (f : ℕ → Bool) → ∃ (λ x → f x ≡ true) ⊎ ∀ x → f x ≡ false | |
Infinite-Valley : (ℕ → ℕ) → Set | |
Infinite-Valley f = ∃ λ m → ∃ λ l → ∀ k → f (m + k) ≡ l | |
_↔_ : (A B : Set) → Set | |
A ↔ B = (A → B) × (B → A) | |
lpo-dec : ∀ {P Q : ℕ → Set} → (∀ n → P n ⊎ Q n) → LPO → (∀ n → P n) ⊎ ∃ (λ n → Q n) | |
lpo-dec {P} {Q} dec lpo = hoho where | |
sum-to-bool : ∀ {A B : Set} → A ⊎ B → Bool | |
sum-to-bool (inj₁ _) = false | |
sum-to-bool (inj₂ _) = true | |
p : ℕ → Bool | |
p n = sum-to-bool (dec n) | |
extract-inj₂ : ∀ {A B : Set} → (x : A ⊎ B) → sum-to-bool x ≡ true → B | |
extract-inj₂ (inj₁ x) () | |
extract-inj₂ (inj₂ y) eq = y | |
extract-inj₁ : ∀ {A B : Set} → (x : A ⊎ B) → sum-to-bool x ≡ false → A | |
extract-inj₁ (inj₂ x) () | |
extract-inj₁ (inj₁ y) eq = y | |
hoho : (∀ n → P n) ⊎ ∃ (λ n → Q n) | |
hoho with lpo p | |
hoho | inj₁ (n , is-true) = inj₂ (n , extract-inj₂ (dec n) is-true) | |
hoho | inj₂ is-false = inj₁ (λ n → extract-inj₁ (dec n) (is-false n)) | |
decreasing-antitone : ∀ a b → a ≤′ b → ∀ f → Decreasing f → f b ≤ f a | |
decreasing-antitone a .a ≤′-refl f d = ≤-refl | |
decreasing-antitone a .(suc _) (≤′-step leq) f d = ≤-trans (d _) (decreasing-antitone a _ leq f d) | |
leq-is-eq-or-less : ∀ x y → x ≤′ y → x ≡ y ⊎ x < y | |
leq-is-eq-or-less x .x ≤′-refl = inj₁ refl | |
leq-is-eq-or-less x .(suc _) (≤′-step leq) = inj₂ (s≤s (NatProp.≤′⇒≤ leq)) | |
≤-refl' : ∀ {a b} → a ≡ b → a ≤ b | |
≤-refl' refl = ≤-refl | |
lemma0 : ∀ x n → x ≤ x + n | |
lemma0 zero x = z≤n | |
lemma0 (suc n) x = s≤s (lemma0 n x) | |
checkValley : | |
LPO → | |
(f : ℕ → ℕ) → Decreasing f | |
→ (level : ℕ) | |
→ (m : ℕ) | |
→ f m ≡ level | |
→ (∀ k → f (m + k) ≡ level) ⊎ (∃ λ m' → f m' < level) | |
checkValley lpo f d level m eq with lpo-dec {λ k → f (m + k) ≡ level} {λ k → f (m + k) < level} (λ n → leq-is-eq-or-less (f (m + n)) level (NatProp.≤⇒≤′ (≤-trans (decreasing-antitone m (m + n) (NatProp.≤⇒≤′ (lemma0 _ _)) f d) (≤-refl' eq)))) lpo | |
... | inj₁ l = inj₁ l | |
... | inj₂ (m' , ll) = inj₂ (m + m' , ll) | |
module Copy_pasta (lpo : LPO) where | |
findValley : | |
(f : ℕ → ℕ) → Decreasing f | |
→ (level : ℕ) | |
→ (∀ level' → level' < level → (n : ℕ) → f n ≡ level' → Infinite-Valley f) | |
→ (n : ℕ) → f n ≡ level → Infinite-Valley f | |
findValley f d l rec n eq with checkValley lpo f d l n eq | |
findValley f d l rec n eq | inj₁ x = n , l , x | |
findValley f d l rec n eq | inj₂ (n' , smaller) = rec (f n') smaller n' refl | |
Induction' : (P : ℕ → Set) → (∀ n → (∀ n' → n' <′ n → P n') → P n) → ∀ n → (∀ n' → n' <′ n → P n') | |
Induction' P f zero = λ n' → λ () | |
Induction' P f (suc n) n' lss with Induction' P f n | |
Induction' P f (suc n) .n ≤′-refl | previous = f n previous | |
Induction' P f (suc n) n' (≤′-step lss) | previous = previous n' lss | |
Induction'' : (P : ℕ → Set) → (∀ n → (∀ n' → n' < n → P n') → P n) → ∀ n → P n | |
Induction'' P f n = | |
Induction' P (λ n rec → f n (λ n' lss → rec n' (NatProp.≤⇒≤′ lss))) (suc n) n (≤′-refl) | |
theorem : ∀ (f : ℕ → ℕ) → Decreasing f → Infinite-Valley f | |
theorem f decreasing = Induction'' _ (findValley f decreasing) (f 0) 0 refl | |
side1 : LPO → (∀ f → Decreasing f → Infinite-Valley f) | |
side1 lpo = Copy_pasta.theorem lpo | |
bool-to-nat : Bool → ℕ | |
bool-to-nat false = 1 | |
bool-to-nat true = 0 | |
side2 : (∀ f → Decreasing f → Infinite-Valley f) → LPO | |
side2 infinite-valleys p = | |
rest (infinite-valleys f f-decreasing) | |
where | |
g : ℕ → Bool | |
g zero = false | |
g (suc n) = p n ∨ g n | |
f : ℕ → ℕ | |
f x = bool-to-nat (g x) | |
f-decreasing : Decreasing f | |
f-decreasing n with p n | |
f-decreasing n | false = ≤-refl | |
f-decreasing n | true = z≤n | |
f-suc=1-means-f=1 : ∀ x → f (suc x) ≡ 1 → f x ≡ 1 | |
f-suc=1-means-f=1 x eq with p x | |
f-suc=1-means-f=1 x eq | false = eq | |
f-suc=1-means-f=1 x () | true | |
stuff : ∀ x → f x ≡ 1 → ∀ y → y <′ x → p y ≡ false | |
stuff .(suc y) eq y ≤′-refl with p y | |
stuff .(suc y) eq y ≤′-refl | false = refl | |
stuff .(suc y) () y ≤′-refl | true | |
stuff .(suc _) eq y (≤′-step {n} y<x) = | |
stuff _ (f-suc=1-means-f=1 _ eq) y y<x | |
find-true : ∀ x → f x ≡ 0 → ∃ (λ x → p x ≡ true) | |
find-true zero () | |
find-true (suc x) eq with p x | inspect p x | |
find-true (suc x) eq | false | _ = find-true x eq | |
find-true (suc x) eq | true | [ eq2 ] = x , eq2 | |
never-more-than-1 : ∀ x l → f x ≡ suc (suc l) → ⊥ | |
never-more-than-1 x l eq with g x | |
never-more-than-1 x l () | false | |
never-more-than-1 x l () | true | |
lemma : ∀ x n → x <′ n + suc x | |
lemma x zero = ≤′-refl | |
lemma x (suc n) = ≤′-step (lemma x n) | |
rest : Infinite-Valley f → ∃ (λ x → p x ≡ true) ⊎ ((x : ℕ) → p x ≡ false) | |
rest (n , zero , is-valley) = inj₁ (find-true (n + 0) (is-valley 0)) | |
rest (n , suc zero , is-valley) = inj₂ (λ x → stuff (n + suc x) (is-valley (suc x)) x (lemma x n) ) | |
rest (n , suc (suc level) , is-valley) = ⊥-elim (never-more-than-1 (n + 0) _ (is-valley 0)) | |
theorem : LPO ↔ (∀ f → Decreasing f → Infinite-Valley f) | |
theorem = side1 , side2 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment