Created
May 14, 2017 14:50
-
-
Save Rotsor/ae5b86a944f0fb5b4666d2f01c8c7759 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module problem1 where | |
-- solution to https://coq-math-problems.github.io/Problem1/ | |
-- | |
-- sadly mine is the longest one | |
-- see https://www.reddit.com/r/Coq/comments/6amhkb/starting_a_problemoftheweek_blog_for_coq/ | |
open import Data.Nat | |
import Data.Nat.Properties as NatProp | |
open import Data.Sum | |
open import Data.Product | |
open import Relation.Binary.PropositionalEquality | |
open import Relation.Nullary | |
open import Data.Empty | |
Decreasing : (f : ℕ → ℕ) → Set | |
Decreasing f = ∀ n → f (suc n) ≤ f n | |
Valley : ℕ → (ℕ → ℕ) → Set | |
Valley w f = ∃ λ m → ∃ λ l → ∀ k → k ≤ w → f (m + k) ≡ l | |
Induction : (P : ℕ → Set) → P zero → (∀ n → P n → P (suc n)) → ∀ n → P n | |
Induction P z s zero = z | |
Induction P z s (suc n) = Induction (λ z₁ → P (suc z₁)) (s zero z) (λ n₁ → s (suc n₁)) n | |
leq-and-neq-give-less : ∀ x y → x ≤ y → ¬ (x ≡ y) → x < y | |
leq-and-neq-give-less .0 zero z≤n neq = ⊥-elim (neq refl) | |
leq-and-neq-give-less .0 (suc y) z≤n neq = s≤s z≤n | |
leq-and-neq-give-less .(suc _) .(suc _) (s≤s leq) neq = | |
s≤s (leq-and-neq-give-less _ _ leq (λ { refl → neq refl })) | |
zero-right-identity : ∀ (m : ℕ) → m + 0 ≡ m | |
zero-right-identity zero = refl | |
zero-right-identity (suc m) = cong suc (zero-right-identity m) | |
helper1 : ∀ (f : ℕ → ℕ) → (m : ℕ) → (l : ℕ) → f m ≡ l → f (m + 0) ≡ l | |
helper1 f m .(f m) refl = cong f (zero-right-identity m) | |
move-succ : ∀ (m k : ℕ) → m + suc k ≡ suc (m + k) | |
move-succ zero k = refl | |
move-succ (suc m) k = cong suc (move-succ m k) | |
leq-remove-succ : ∀ k w → suc k ≤ suc w → k ≤ w | |
leq-remove-succ k w (s≤s leq) = leq | |
checkValley : | |
(f : ℕ → ℕ) → Decreasing f | |
→ (width : ℕ) | |
→ (level : ℕ) | |
→ (m : ℕ) | |
→ f m ≡ level | |
→ (∀ k → k ≤ width → f (m + k) ≡ level) ⊎ (∃ λ m' → f m' < level) | |
checkValley f d zero l m eq = inj₁ (λ k → λ { z≤n → helper1 f m l eq}) | |
checkValley f d (suc w) l m eq with f (suc m) ≟ l | |
checkValley f d (suc w) l m eq | Dec.yes p with checkValley f d w l (suc m) p | |
checkValley f d (suc w) l m eq | yes p | (inj₁ rest-flat) = | |
inj₁ (λ { | |
zero → λ x₁ → helper1 f m l eq | |
; (suc k) → λ in-range → | |
trans (cong f (move-succ m k)) (rest-flat k (leq-remove-succ k w in-range))}) | |
checkValley f d (suc w) l m eq | yes p | (inj₂ y) = inj₂ y | |
checkValley f d (suc w) l m eq | Dec.no ¬p = | |
inj₂ ((suc m) , leq-and-neq-give-less (f (suc m)) l (subst (λ q → f (suc m) ≤ q) eq (d m)) ¬p) | |
findValley : | |
(f : ℕ → ℕ) → Decreasing f | |
→ (width : ℕ) | |
→ (level : ℕ) | |
→ (∀ level' → level' < level → (n : ℕ) → f n ≡ level' → Valley width f) | |
→ (n : ℕ) → f n ≡ level → Valley width f | |
findValley f d w l rec n eq with checkValley f d w l n eq | |
findValley f d w l rec n eq | inj₁ x = n , l , x | |
findValley f d w l rec n eq | inj₂ (n' , smaller) = rec (f n') smaller n' refl | |
Induction' : (P : ℕ → Set) → (∀ n → (∀ n' → n' <′ n → P n') → P n) → ∀ n → (∀ n' → n' <′ n → P n') | |
Induction' P f zero = λ n' → λ () | |
Induction' P f (suc n) n' lss with Induction' P f n | |
Induction' P f (suc n) .n ≤′-refl | previous = f n previous | |
Induction' P f (suc n) n' (≤′-step lss) | previous = previous n' lss | |
Induction'' : (P : ℕ → Set) → (∀ n → (∀ n' → n' < n → P n') → P n) → ∀ n → P n | |
Induction'' P f n = | |
Induction' P (λ n rec → f n (λ n' lss → rec n' (NatProp.≤⇒≤′ lss))) (suc n) n (≤′-refl) | |
theorem : ∀ (f : ℕ → ℕ) → Decreasing f → ∀ w → Valley w f | |
theorem f decreasing w = Induction'' _ (findValley f decreasing w) (f 0) 0 refl |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment