Created
July 9, 2019 22:36
-
-
Save Rotsor/b402996c2ef86caa09bb6b998d92819d to your computer and use it in GitHub Desktop.
A weird tree monad proposed on reddit
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
-- a proof of monad laws for a strange monad defined in: | |
-- https://www.reddit.com/r/haskell/comments/cb1j40/is_there_a_valid_monad_instance_for_binary_trees/etcqsts/ | |
data TREE (a : Set) : Set where | |
Leaf : a → TREE a | |
Tree : a → TREE a → TREE a → TREE a | |
distribute : ∀ {a} → (TREE a) -> (TREE a) -> (TREE a) -> TREE a | |
distribute l r (Leaf a) = Tree a l r | |
distribute l r (Tree a cl cr) = Tree a (distribute l r cl) (distribute l r cr) | |
return : ∀ {a} → a → TREE a | |
return = Leaf | |
_>>=_ : ∀ {a b} → TREE a → (a → TREE b) → TREE b | |
Leaf a >>= f = f a | |
Tree a l r >>= f = distribute (l >>= f) (r >>= f) (f a) | |
data _≡_ {A : Set} (x : A) : A → Set where | |
refl : x ≡ x | |
infix 3 _≡_ | |
trans : ∀ {A} {x y z : A} → x ≡ y → y ≡ z → x ≡ z | |
trans refl refl = refl | |
cong : ∀ {A B} (f : A → B) → ∀ {x y} → x ≡ y → f x ≡ f y | |
cong f refl = refl | |
cong₂ : ∀ {A B C} (f : A → B → C) → ∀ {a b c d} → a ≡ b → c ≡ d → f a c ≡ f b d | |
cong₂ f refl refl = refl | |
lemma-case0 : ∀ {a b} l r x (g : a → TREE b) | |
→ distribute (l >>= g) (r >>= g) (Leaf x >>= g) ≡ distribute l r (Leaf x) >>= g | |
lemma-case0 = λ l r x g → refl | |
distribute-assoc : ∀ {a} (l r cl cr x : TREE a) → | |
distribute l r (distribute cl cr x) | |
≡ | |
distribute (distribute l r cl) (distribute l r cr) x | |
distribute-assoc l r cl cr (Leaf x) = refl | |
distribute-assoc l r cl cr (Tree x ccl ccr) = | |
cong₂ (Tree x) (distribute-assoc l r cl cr ccl) (distribute-assoc l r cl cr ccr) | |
lemma : | |
∀ {a b} l r x (g : a → TREE b) | |
→ distribute (l >>= g) (r >>= g) (x >>= g) ≡ distribute l r x >>= g | |
lemma l r (Leaf x) g = refl | |
lemma l r (Tree x cl cr) g = | |
trans (cong (distribute (l >>= g) (r >>= g)) (lemma-case0 cl cr x g)) | |
(trans (distribute-assoc _ _ _ _ _) | |
(cong₂ (λ q w → distribute q w (g x)) | |
(lemma l r cl g) | |
(lemma l r cr g))) | |
assoc : ∀ {a b c} (f : a → TREE b) (g : b → TREE c) x → x >>= (λ x → f x >>= g) ≡ (x >>= f) >>= g | |
assoc f g (Leaf x) = refl | |
assoc f g (Tree x l r) = | |
trans ( cong₂ (λ q w → distribute q w (f x >>= g)) (assoc f g l) (assoc f g r)) | |
(lemma (l >>= f) (r >>= f) (f x) g) | |
unit-l : ∀ {a b} (f : a → TREE b) (x : a) → return x >>= f ≡ f x | |
unit-l f x = refl | |
unit-r : ∀ {a} (x : TREE a) → x >>= return ≡ x | |
unit-r (Leaf x) = refl | |
unit-r (Tree x l r) = cong₂ (Tree x) (unit-r _) (unit-r _) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment