Skip to content

Instantly share code, notes, and snippets.

@RoyalSix
Created July 3, 2019 19:24
Show Gist options
  • Save RoyalSix/48b085d35bce5466526a0bea8b8d8f4a to your computer and use it in GitHub Desktop.
Save RoyalSix/48b085d35bce5466526a0bea8b8d8f4a to your computer and use it in GitHub Desktop.
Tensorflow Image Classification Example
# -*- coding: utf-8 -*-
"""Image Classification.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/gist/RoyalSix/c2841745a60a20742251d750c7267fbf/image-classification.ipynb
"""
from __future__ import absolute_import, division, print_function, unicode_literals
# TensorFlow and tf.keras
import tensorflow as tf
from tensorflow import keras
# Helper libraries
import numpy as np
import matplotlib.pyplot as plt
fashion_mnist = keras.datasets.fashion_mnist
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()
train_images[0]
class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
test_labels
train_images.shape
len(train_labels)
plt.figure()
plt.imshow(train_images[0])
plt.colorbar()
plt.grid(True)
plt.show()
train_images = train_images / 255.0
test_images = test_images / 255.0
plt.figure(figsize=(10,10))
for i in range(25):
plt.subplot(5,5,i+1)
plt.xticks([])
plt.yticks([])
plt.grid(False)
plt.imshow(train_images[i], cmap=plt.cm.binary)
plt.xlabel(class_names[train_labels[i]])
plt.show()
model = keras.Sequential([
keras.layers.Flatten(input_shape=(28, 28)),
keras.layers.Dense(128, activation=tf.nn.relu),
keras.layers.Dense(10, activation=tf.nn.softmax)
])
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(train_images, train_labels, epochs=5)
test_loss, test_acc = model.evaluate(test_images, test_labels)
print('Test accuracy:', test_acc)
predictions = model.predict(test_images)
predictions[0]
np.argmax(predictions[0])
test_labels[0]
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment