Created
January 31, 2015 21:22
-
-
Save RussellSpitzer/e89f3fde61e38ae63a31 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
package com.datastax.spark.connector | |
import org.apache.spark.SparkContext | |
import org.apache.spark.rdd.RDD | |
import com.datastax.spark.connector.cql._ | |
import com.datastax.spark.connector.rdd.{CassandraPartitionKeyRDD, CassandraRDD, ValidRDDType, SpannedRDD} | |
import com.datastax.spark.connector.writer._ | |
import com.datastax.spark.connector.rdd.reader._ | |
import com.datastax.spark.connector._ | |
import scala.reflect.ClassTag | |
/** Provides Cassandra-specific methods on `RDD` */ | |
class RDDFunctions[T](rdd: RDD[T]) extends WritableToCassandra[T] with Serializable { | |
override val sparkContext: SparkContext = rdd.sparkContext | |
/** | |
* Saves the data from `RDD` to a Cassandra table. Uses the specified column names. | |
* @see [[com.datastax.spark.connector.writer.WritableToCassandra]] | |
*/ | |
def saveToCassandra(keyspaceName: String, | |
tableName: String, | |
columns: ColumnSelector = AllColumns, | |
writeConf: WriteConf = WriteConf.fromSparkConf(sparkContext.getConf)) | |
(implicit connector: CassandraConnector = CassandraConnector(sparkContext.getConf), | |
rwf: RowWriterFactory[T]): Unit = { | |
val writer = TableWriter(connector, keyspaceName, tableName, columns, writeConf) | |
rdd.sparkContext.runJob(rdd, writer.write _) | |
} | |
/** Applies a function to each item, and groups consecutive items having the same value together. | |
* Contrary to `groupBy`, items from the same group must be already next to each other in the | |
* original collection. Works locally on each partition, so items from different | |
* partitions will never be placed in the same group. */ | |
def spanBy[U](f: (T) => U): RDD[(U, Iterable[T])] = | |
new SpannedRDD[U, T](rdd, f) | |
def fetchFromCassandra[R](keyspaceName: String, tableName: String, repartition: Boolean = true) | |
(implicit connector: CassandraConnector = CassandraConnector(sparkContext.getConf), | |
newType: ClassTag[R], rrf: RowReaderFactory[R], ev: ValidRDDType[R], | |
currentType: ClassTag[T], rwf: RowWriterFactory[T]): CassandraRDD[R] = { | |
val cassRdd = new CassandraPartitionKeyRDD[T, R](rdd, keyspaceName, tableName, connector) | |
if (repartition) { | |
// Todo See if we can determine whether or not we should repartition (prev.class == CassandraRDD and T matches keys of Keyspace,Table) | |
cassRdd.partitionByReplica() | |
} else { | |
cassRdd | |
} | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
can you help me with my device please