Created
September 7, 2014 12:33
-
-
Save RustingSword/e22a11e1d391f2ab1f2c to your computer and use it in GitHub Desktop.
least square plane fitting of 3d points
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import scipy.optimize | |
from mpl_toolkits.mplot3d import Axes3D | |
import matplotlib.pyplot as plt | |
fig = plt.figure() | |
ax = fig.gca(projection='3d') | |
def fitPlaneLTSQ(XYZ): | |
(rows, cols) = XYZ.shape | |
G = np.ones((rows, 3)) | |
G[:, 0] = XYZ[:, 0] #X | |
G[:, 1] = XYZ[:, 1] #Y | |
Z = XYZ[:, 2] | |
(a, b, c),resid,rank,s = np.linalg.lstsq(G, Z) | |
normal = (a, b, -1) | |
nn = np.linalg.norm(normal) | |
normal = normal / nn | |
return (c, normal) | |
data = np.random.randn(100, 3)/3 | |
data[:, 2] /=10 | |
c, normal = fitPlaneLTSQ(data) | |
# plot fitted plane | |
maxx = np.max(data[:,0]) | |
maxy = np.max(data[:,1]) | |
minx = np.min(data[:,0]) | |
miny = np.min(data[:,1]) | |
point = np.array([0.0, 0.0, c]) | |
d = -point.dot(normal) | |
# plot original points | |
ax.scatter(data[:, 0], data[:, 1], data[:, 2]) | |
# compute needed points for plane plotting | |
xx, yy = np.meshgrid([minx, maxx], [miny, maxy]) | |
z = (-normal[0]*xx - normal[1]*yy - d)*1. / normal[2] | |
# plot plane | |
ax.plot_surface(xx, yy, z, alpha=0.2) | |
ax.set_xlabel('x') | |
ax.set_ylabel('y') | |
ax.set_zlabel('z') | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
You might need to "c / nn" in the fitPlaneLTSQ() function