Created
September 2, 2017 08:27
-
Star
(129)
You must be signed in to star a gist -
Fork
(34)
You must be signed in to fork a gist
-
-
Save RyanAkilos/3808c17f79e77c4117de35aa68447045 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from keras import backend as K | |
from keras.models import Sequential | |
from keras.layers.core import Dense, Dropout, Activation, Flatten | |
from keras.layers.convolutional import Convolution2D, MaxPooling2D | |
from keras.preprocessing.image import ImageDataGenerator | |
from sklearn.metrics import classification_report, confusion_matrix | |
#Start | |
train_data_path = 'F://data//Train' | |
test_data_path = 'F://data//Validation' | |
img_rows = 150 | |
img_cols = 150 | |
epochs = 30 | |
batch_size = 32 | |
num_of_train_samples = 3000 | |
num_of_test_samples = 600 | |
#Image Generator | |
train_datagen = ImageDataGenerator(rescale=1. / 255, | |
rotation_range=40, | |
width_shift_range=0.2, | |
height_shift_range=0.2, | |
shear_range=0.2, | |
zoom_range=0.2, | |
horizontal_flip=True, | |
fill_mode='nearest') | |
test_datagen = ImageDataGenerator(rescale=1. / 255) | |
train_generator = train_datagen.flow_from_directory(train_data_path, | |
target_size=(img_rows, img_cols), | |
batch_size=batch_size, | |
class_mode='categorical') | |
validation_generator = test_datagen.flow_from_directory(test_data_path, | |
target_size=(img_rows, img_cols), | |
batch_size=batch_size, | |
class_mode='categorical') | |
# Build model | |
model = Sequential() | |
model.add(Convolution2D(32, (3, 3), input_shape=(img_rows, img_cols, 3), padding='valid')) | |
model.add(Activation('relu')) | |
model.add(MaxPooling2D(pool_size=(2, 2))) | |
model.add(Convolution2D(32, (3, 3), padding='valid')) | |
model.add(Activation('relu')) | |
model.add(MaxPooling2D(pool_size=(2, 2))) | |
model.add(Convolution2D(64, (3, 3), padding='valid')) | |
model.add(Activation('relu')) | |
model.add(MaxPooling2D(pool_size=(2, 2))) | |
model.add(Flatten()) | |
model.add(Dense(64)) | |
model.add(Activation('relu')) | |
model.add(Dropout(0.5)) | |
model.add(Dense(5)) | |
model.add(Activation('softmax')) | |
model.compile(loss='categorical_crossentropy', | |
optimizer='rmsprop', | |
metrics=['accuracy']) | |
#Train | |
model.fit_generator(train_generator, | |
steps_per_epoch=num_of_train_samples // batch_size, | |
epochs=epochs, | |
validation_data=validation_generator, | |
validation_steps=num_of_test_samples // batch_size) | |
#Confution Matrix and Classification Report | |
Y_pred = model.predict_generator(validation_generator, num_of_test_samples // batch_size+1) | |
y_pred = np.argmax(Y_pred, axis=1) | |
print('Confusion Matrix') | |
print(confusion_matrix(validation_generator.classes, y_pred)) | |
print('Classification Report') | |
target_names = ['Cats', 'Dogs', 'Horse'] | |
print(classification_report(validation_generator.classes, y_pred, target_names=target_names)) | |
Hi!, very good gist.
I think you have to put shuffle=False when you do test_datagen.flow_from_directory() so the samples don't get shuffled and have the same order as validation_generator.classesVery good comment man!
I was struggling to understand why my model had good metrics, but when predicting without the 'Shuffle = False' I got bad results. Thank you so much !
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
it seems that some labels in y_test don't appear in y_pred, see this .