Created
July 9, 2021 11:39
-
-
Save RyanGreenup/99bc1ad4ba9e8f267d652ec3ddc49f9e to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(ggplot2) | |
# Enter the data in such a way to match the Plot | |
data <- | |
rbind( | |
c("C", 0.97, 1135), | |
c("C++", 0.84, 3542), | |
c("Go", 3.75, 894), | |
c("Rust", 0.93, 763), | |
c("Julia", 1.32, 624), | |
c("Python", 163, 688), | |
c("Lua", 113, 623), | |
c("Swift", 1.4, 1165), | |
c("Intel Fortran", 1.42, 957), | |
c("Haskell GHC", 1.51, 1975), | |
c("C#", 3.14, 1974), | |
c("Chapel", 3.34, 588), | |
c("F#", 3.77, 897), | |
c("Pascal", 3.86, 950), | |
c("Ada", 4.02, 577), | |
c("Node JS", 4.03, 1122), | |
c("LISP", 4.09, 2447), | |
c("Java", 4.15, 796), | |
c("OCaml", 7.53, 717), | |
c("Dart", 8.72, 957), | |
c("Racket", 10.45, 801), | |
c("PHP", 24.89, 875), | |
c("Erlang", 44, 792), | |
c("Ruby", 262, 880) | |
) | |
data <- apply(data, 2, rev) | |
data <- as.data.frame(data) | |
data[, 2] <- as.numeric(data[, 2]) | |
data[, 2] <- log(data[, 2] + 1) | |
# Make a Data Frame | |
df <- as.data.frame(data) | |
names(df) <- c("Language", "Time", "Characters") | |
df$Language <- factor(seq_len(nrow(df)), labels = df$Language) | |
df$Time <- as.numeric(df$Time) | |
df$Characters <- as.numeric(df$Characters) | |
# If you want it ordered in descending uncomment below | |
# df[rank(df$Time), ] | |
# Make sure the languages keep the order they were given in | |
# I want them in a specific order | |
df$Language <- factor(sort(df$Time), labels = df$Language) | |
factor(df$Language, ordered = TRUE, levels = rank(df$Time)) | |
# Identify clusters with heirarchical clustering | |
times <- df$Time | |
names(times) <- df$Language | |
hc.av <- hclust(dist(times), method = "average") | |
svg(filename = "/tmp/Dendrogram_of_Language_Performance.svg") | |
plot(hc.av) | |
dev.off() | |
df$Category <- factor(cutree(tree = hc.av, k = 4)) | |
levels(df$Category) <- rev(levels(df$Category)) | |
# Build the Plot | |
p <- ggplot(df, aes(x = Language, y = Time, fill = Category)) + | |
geom_col(col = 'black') + | |
labs(y = "Log Time", | |
title = "Comparison of Programming Language", | |
subtitle = "Log Time to Produce 16000 Mandelbrot") + | |
guides(fill = guide_legend("Performance\nCategory")) + | |
theme_classic() + | |
theme(axis.text.x = element_text( | |
angle = 90, | |
vjust = 0.5, | |
hjust = 1 | |
)) + | |
coord_flip() | |
ggsave("/tmp/barplot_language_performance_comparison.svg") | |
p | |
# Compare Complexity | |
# df$Time <- exp(df$Time) | |
df$Characters <- log(df$Characters) | |
p <- ggplot(df, aes(x = Time, y = Characters, fill = Category)) + | |
geom_label(aes(label = Language)) + | |
labs( | |
y = "Code Length (Log Gzipped bytes)", | |
x = "Log Time", | |
title = "Comparison of Programming Language Complexity and Performance", | |
subtitle = "Log Time to Produce 16000² Mandelbrot" | |
) + | |
guides(fill = guide_legend(title = "Performance\nCategory", | |
override.aes = aes(label = ""))) + # https://stackoverflow.com/a/60730234 | |
theme_classic() | |
p | |
ggsave("/tmp/barplot_language_performance_comparison.svg") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment