CGS Units conversion in star formation group
Given
$\pi \text{pc} = 96,939,420,213,600,000 \text{m}$ , the exact value from 2015 IAU resolution B2.
So
$$
1 \text{pc} = 30,856,775,814,913,673 \text{m},
$$
to the nearest integer.
$$
1 \text{Myr} = 86400 \times 365.25 \times 10^6 \text{s},
$$
1 Myr in seconds, using 1 million Julian years
$$
1 \text{km/s} \approx 1.023 \text{pc/Myr}
$$
In CGS, it is
$$
v_A = \frac{B}{\sqrt{4\pi\rho}}
$$
In SI, it is $v_A = \frac{B}{\sqrt{\mu_0\rho}}$
$$
1\mathrm{M_{\odot}} = 1.9884\times10^{30} \text{kg},
$$
derived by the $G$ value in CODATA 2018.
Magnetic field strength:
Boltzmann constant: $k_B = 1.380649 \times 10^{-23} \text{J/K}$ in SI unit. (CODATA 2018)
In cgs unit, $1 \text{J} = 10^{7} \text{erg} = 10^7 \text{g}\cdot \text{cm}^2 \text{s}^{-2}$
Thus, $k_B = 1.380649 \times 10^{-16} \text{erg/K}$
Gravitation constant: $G = 6.67430 \times 10^{-11} \text{m}^3 \text{kg}^{-1} \text{s}^{-2}$ in SI unit. (CODATA 2018)
$G$ in pc-Myr-Msun unit is $4.4998 \times 10^{-3} \text{pc}^3 \text{Myr}^{-2} \text{M}_{\odot}^{-1}$
$G$ in km-s-Msun unit is $4.29977 \times 10^{-3} \text{km}^3 \text{s}^{-2} \text{M}_{\odot}^{-1}$
Jeans length:
$$
\lambda_J = \sqrt{5c_s^2 /(2\pi G \rho)},
$$
where $c_s$ is the sound speed. (Some may use $\lambda_J = c_s/\sqrt{4\pi G\rho}$ , e.g.,
doi: 10.3389/fspa.2019.00051
Jeans mass:
$$
M_J = \frac{4\pi}{3} \rho \lambda_J^3,
$$
where $\rho$ is the density.
the ambipolar diffusion coefficient
A typical value of the ambipolar diffusion coefficient is given by Toth, 1994, ApJ, 425, 171, page 3
$$
\alpha = 3.7 \times 10^{13} \text{cm}^3 \text{s}^{-1}\text{g}^{-1} = 79047.6 \text{pc}^3 \text{Myr}^{-1} \text{M}_{\odot}^{-1}
$$