Created
October 16, 2020 05:28
-
-
Save Saarth-Jain/a8b16b0ea04d7c6b1dbb37cd7bb3b037 to your computer and use it in GitHub Desktop.
CS50 Solution pset3 tideman
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include <cs50.h> | |
#include <stdio.h> | |
#include <stdlib.h> | |
#include <string.h> | |
// Max number of candidates | |
#define MAX 9 | |
// preferences[i][j] is number of voters who prefer i over j | |
int preferences[MAX][MAX]; | |
// locked[i][j] means i is locked in over j | |
bool locked[MAX][MAX]; | |
bool lock = true; | |
// Each pair has a winner, loser | |
typedef struct | |
{ | |
int winner; | |
int loser; | |
} | |
pair; | |
// Array of candidates | |
string candidates[MAX]; | |
pair pairs[MAX * (MAX - 1) / 2]; | |
int pair_count; | |
int candidate_count; | |
// Function prototypes | |
bool vote(int rank, string name, int ranks[]); | |
void record_preferences(int ranks[]); | |
void add_pairs(void); | |
void sort_pairs(void); | |
int comparator(const void *a, const void *b); | |
void lock_pairs(void); | |
void print_winner(void); | |
int main(int argc, string argv[]) | |
{ | |
// Check for invalid usage | |
if (argc < 2) | |
{ | |
printf("Usage: tideman [candidate ...]\n"); | |
return 1; | |
} | |
// Populate array of candidates | |
candidate_count = argc - 1; | |
if (candidate_count > MAX) | |
{ | |
printf("Maximum number of candidates is %i\n", MAX); | |
return 2; | |
} | |
for (int i = 0; i < candidate_count; i++) | |
{ | |
candidates[i] = argv[i + 1]; | |
} | |
// Clear graph of locked in pairs and the preferences array from garbage values | |
for (int i = 0; i < candidate_count; i++) | |
{ | |
for (int j = 0; j < candidate_count; j++) | |
{ | |
locked[i][j] = false; | |
preferences[i][j] = 0; | |
} | |
} | |
pair_count = 0; | |
int voter_count = get_int("Number of voters: "); | |
// Query for votes | |
for (int i = 0; i < voter_count; i++) | |
{ | |
// ranks[i] is voter's ith preference | |
int ranks[candidate_count]; | |
// Query for each rank | |
for (int j = 0; j < candidate_count; j++) | |
{ | |
string name = get_string("Rank %i: ", j + 1); | |
if (!vote(j, name, ranks)) | |
{ | |
printf("Invalid vote.\n"); | |
return 3; | |
} | |
} | |
record_preferences(ranks); | |
printf("\n"); | |
} | |
add_pairs(); | |
sort_pairs(); | |
lock_pairs(); | |
print_winner(); | |
return 0; | |
} | |
// Update ranks given a new vote | |
bool vote(int rank, string name, int ranks[]) | |
{ | |
for (int i = 0; i < candidate_count; i++) | |
{ | |
if (strcmp(name, candidates[i]) == 0) | |
{ | |
ranks[rank] = i; | |
return true; | |
} | |
} | |
return false; | |
} | |
// Update preferences given one voter's ranks | |
void record_preferences(int ranks[]) | |
{ | |
for (int i = 0; i < candidate_count; i++) | |
{ | |
for (int j = i + 1; j < candidate_count; j++) | |
{ | |
preferences[ranks[i]][ranks[j]]++; | |
} | |
} | |
} | |
// Record pairs of candidates where one is preferred over the other | |
void add_pairs(void) | |
{ | |
for (int i = 0; i < candidate_count; i++) | |
{ | |
for (int j = i + 1; j < candidate_count; j++) | |
{ | |
if (preferences[i][j] > preferences[j][i]) | |
{ | |
pairs[pair_count].winner = i; | |
pairs[pair_count].loser = j; | |
pair_count++; | |
} | |
else if (preferences[i][j] < preferences[j][i]) | |
{ | |
pairs[pair_count].winner = j; | |
pairs[pair_count].loser = i; | |
pair_count++; | |
} | |
} | |
} | |
} | |
// function used for sort | |
int comparator(const void *a, const void *b) | |
{ | |
pair *ab = (pair *)a; | |
pair *ba = (pair *)b; | |
// uses pointers to access the preferences and check how much a candidate wins over another | |
return (preferences[ba->winner][ba->loser] - preferences[ab->winner][ab->loser]); | |
} | |
// Sort pairs in decreasing order by strength of victory | |
void sort_pairs(void) | |
{ | |
qsort(pairs, pair_count, sizeof(pair), comparator); | |
} | |
bool has_cycle(int winner, int loser) | |
{ | |
while (winner != -1 && winner != loser) | |
{ | |
bool found = false; | |
for (int i = 0; i < candidate_count; i++) | |
{ | |
if (locked[i][winner]) | |
{ | |
found = true; | |
winner = i; | |
} | |
} | |
if (!found) | |
{ | |
winner = -1; | |
} | |
} | |
if (winner == loser) | |
{ | |
return true; | |
} | |
return false; | |
} | |
// Lock pairs into the candidate graph in order, without creating cycles | |
void lock_pairs(void) | |
{ | |
//TODO | |
for (int i = 0; i < pair_count; i++) | |
{ | |
if (!has_cycle(pairs[i].winner, pairs[i].loser)) | |
{ | |
locked[pairs[i].winner][pairs[i].loser] = true; | |
} | |
} | |
} | |
// Print the winner of the election | |
void print_winner(void) | |
{ | |
//TODO | |
for (int col = 0; col < MAX; col++) | |
{ | |
bool found_source = true; | |
for (int row = 0; row < MAX; row++) | |
{ | |
if (locked[row][col] == true) | |
{ | |
found_source = false; | |
break; | |
} | |
} | |
if (found_source) | |
{ | |
printf("%s\n", candidates[col]); | |
return; | |
} | |
} | |
return; | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Hi,
I'm not sure about whether my answer would be suitable to solve your doubt regarding 6 votes for the 4 candidates thing, yet I have figured out the recursive version of
has_cycle()
...We are given a winner and a loser,
original_winner
andcurrent_loser
respectively, I'd talk about the base case later.We'll make a recursive call
has_cycle(original_winner /* this doesn't change */, pair[i].loser)
for each new pair inpairs
, where thecurrent_loser
is the winner, if that pair already has a edge locked in.Now in the recursive call to
has_cycle
, if theoriginal_winner
that we passed in while calling the function inlock_pairs()
is the same as thecurrent_loser
in the recursive call, this means we have circled around, thus a cycle exists, and we return true.If no cycle exists, it returns false.
Test for some randomized testcases at this website, where the graph has a red edge, and do a dry-run of the above recursive algorithm on that graph. That might help you understand it better.
Hope the answer helped :)