Last active
January 18, 2022 02:59
-
-
Save Sam-Belliveau/1a90a6122e94f1c083827da59d54ce1e to your computer and use it in GitHub Desktop.
Sorting Algorithms that are SUPER simple, yet are approximately the speed of std::sort()
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| /** | |
| * MIT License | |
| * | |
| * Copyright (c) 2022 Sam Belliveau | |
| * | |
| * Permission is hereby granted, free of charge, to any person obtaining a copy | |
| * of this software and associated documentation files (the "Software"), to deal | |
| * in the Software without restriction, including without limitation the rights | |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
| * copies of the Software, and to permit persons to whom the Software is | |
| * furnished to do so, subject to the following conditions: | |
| * | |
| * The above copyright notice and this permission notice shall be included in all | |
| * copies or substantial portions of the Software. | |
| * | |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
| * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
| * SOFTWARE. | |
| */ | |
| #ifndef SAM_BELLIVEAU_THEORETICAL_OPTIMAL_SORTING | |
| #define SAM_BELLIVEAU_THEORETICAL_OPTIMAL_SORTING 1 | |
| #include <algorithm> | |
| #include <functional> | |
| #include <iterator> | |
| #include <utility> | |
| namespace sbos | |
| { | |
| enum Constants | |
| { | |
| // Low Assignment Sort | |
| INSERTION_THRESHOLD = 16, | |
| HEAP_SORT_THREASHOLD = 24, | |
| // Low Comparison Sort | |
| BINARY_INSERT_THRESHOLD = 32, | |
| }; | |
| } | |
| // Function Prototypes for fixed sized sorting algorithms | |
| namespace sbos | |
| { | |
| template<class T, class Compare = std::less<T> > | |
| void Sort2(T&, T&, Compare = Compare()); | |
| template<class T, class Compare = std::less<T> > | |
| void Sort3(T&, T&, T&, Compare = Compare()); | |
| template<class T, class Compare = std::less<T> > | |
| void Sort4(T&, T&, T&, T&, Compare = Compare()); | |
| // Sort5 is UNSTABLE, thus it is not used in insertion sorts | |
| template<class T, class Compare = std::less<T> > | |
| void Sort5(T&, T&, T&, T&, T&, Compare = Compare()); | |
| } | |
| namespace sbos | |
| { | |
| /* | |
| * BinaryInsertionSort sorts things in the mathmatically | |
| * fewest number of comparisons possible, however it begins | |
| * to struggle with large arrays due to the long process of | |
| * insertion and the bad branch prediction. | |
| * | |
| * Comparison Complexity: O(n log n) | |
| * Time Complexity: O(n^2) | |
| * Space Complexity: O(1) | |
| */ | |
| template<class Iter, class Compare = std::less<typename std::iterator_traits<Iter>::value_type> > | |
| void BinaryInsertionSort(Iter first, Iter last, Compare comp = Compare()); | |
| /* | |
| * UnstableInsertionSort is a standard version of InsertionSort, | |
| * however it uses Sort5 to sort the first 5 elements, thus, | |
| * making it unstable. It is good for sorting small arrays or | |
| * an array that is almost sorted. | |
| * | |
| * Time Complexity: O(n^2) | |
| * Space Complexity: O(1) | |
| */ | |
| template<class Iter, class Compare = std::less<typename std::iterator_traits<Iter>::value_type> > | |
| void UnstableInsertionSort(Iter first, Iter last, Compare comp = Compare()); | |
| /* | |
| * LowComparisonSort uses BinaryInsertionSort and MergeSort | |
| * to sort elements in as few comparisons as mathmatically | |
| * possible. This is ideal when comparisons are very expensive | |
| * ie. you are asking humans to compare two things. | |
| * | |
| * It does not require Strong Comparisons, | |
| * because no comparisons will ever be repeated. | |
| * | |
| * Comparison Complexity: O(n log n) | |
| * Time Complexity: O(n^2) | |
| * Space Complexity: O(n) | |
| */ | |
| template<class Iter, class Compare = std::less<typename std::iterator_traits<Iter>::value_type> > | |
| void LowComparisonSort(Iter first, Iter last, Compare comp = Compare()); | |
| /* | |
| * LowAssignmentSort is a simple sorting algorithm that uses | |
| * median of 5 QuickSort / Insertion Sort / Heap Sort similar | |
| * to the way that IntroSort works. | |
| * | |
| * Time Complexity: O(n log n) | |
| * Space Complexity: O(log n) | |
| */ | |
| template<class Iter, class Compare = std::less<typename std::iterator_traits<Iter>::value_type> > | |
| void LowAssignmentSort(Iter first, Iter last, Compare comp = Compare()); | |
| } | |
| namespace sbos | |
| { | |
| template<class Iter, class Compare> | |
| void BinaryInsertionSort(Iter first, Iter last, Compare comp) | |
| { | |
| using T = typename std::iterator_traits<Iter>::value_type; | |
| switch(std::distance(first, last)) | |
| { | |
| case 0: case 1: return; | |
| case 2: return Sort2(first[0], first[1], comp); | |
| case 3: return Sort3(first[0], first[1], first[2], comp); | |
| case 4: return Sort4(first[0], first[1], first[2], first[3], comp); | |
| default: | |
| Sort4(first[0], first[1], first[2], first[3], comp); | |
| for(Iter i = std::next(first, 4); i < last; std::advance(i, 1)) | |
| { | |
| const T elem = std::move(*i); | |
| Iter s_first = first, s_end = i; | |
| while(s_first < s_end) | |
| { | |
| const Iter s_middle = std::next(s_first, std::distance(s_first, s_end) / 2); | |
| if (comp(elem, *s_middle)) s_end = s_middle; | |
| else s_first = std::next(s_middle, 1); | |
| } | |
| for(Iter s = i; s_first < s; std::advance(s, -1)) | |
| s[0] = std::move(s[-1]); | |
| *s_first = std::move(elem); | |
| } | |
| break; | |
| } | |
| } | |
| template<class Iter, class Compare> | |
| void UnstableInsertionSort(Iter first, Iter last, Compare comp) | |
| { | |
| using T = typename std::iterator_traits<Iter>::value_type; | |
| switch(std::distance(first, last)) | |
| { | |
| case 0: case 1: return; | |
| case 2: return Sort2(first[0], first[1], comp); | |
| case 3: return Sort3(first[0], first[1], first[2], comp); | |
| case 4: return Sort4(first[0], first[1], first[2], first[3], comp); | |
| case 5: return Sort5(first[0], first[1], first[2], first[3], first[4], comp); | |
| default: | |
| Sort5(first[0], first[1], first[2], first[3], first[4], comp); | |
| for(Iter i = std::next(first, 5); i < last; std::advance(i, 1)) | |
| { | |
| Iter current = i; | |
| Iter previous = std::prev(current, 1); | |
| if(comp(*current, *previous)) | |
| { | |
| T t = std::move(*current); | |
| do { | |
| *current = std::move(*previous); | |
| std::advance(current, -1); | |
| std::advance(previous, -1); | |
| } while(current != first && comp(t, *previous)); | |
| *current = t; | |
| } | |
| } | |
| break; | |
| } | |
| } | |
| template<class Iter, class Compare> | |
| void LowComparisonSort(Iter first, Iter last, Compare comp) | |
| { | |
| using DT = typename std::iterator_traits<Iter>::difference_type; | |
| using T = typename std::iterator_traits<Iter>::value_type; | |
| const DT size = std::distance(first, last); | |
| if(size <= Constants::BINARY_INSERT_THRESHOLD) | |
| { | |
| // Binary Insertion Sort provides the | |
| // lowest number of comparisons possible | |
| BinaryInsertionSort(first, last, comp); | |
| } | |
| else | |
| { | |
| // Otherwise Merging provides similar | |
| // numbers of comparisons when n is large | |
| const Iter middle = std::next(first, size / 2); | |
| LowComparisonSort(first, middle, comp); | |
| LowComparisonSort(middle, last, comp); | |
| std::inplace_merge(first, middle, last, comp); | |
| } | |
| } | |
| namespace wrapped | |
| { | |
| template<class DT> | |
| int log_2(DT size) | |
| { | |
| int result = 0; | |
| while(size >>= 1) ++result; | |
| return result; | |
| } | |
| template<class Iter, class Compare = std::less<typename std::iterator_traits<Iter>::value_type> > | |
| void LowAssignmentSort(int depth, Iter first, Iter last, Compare comp = Compare()) | |
| { | |
| using DT = typename std::iterator_traits<Iter>::difference_type; | |
| // Loop in order to require less recursions | |
| while (1) | |
| { | |
| const DT size = std::distance(first, last); | |
| // Exit Quick Sort if the size of the list is small | |
| // Or we have reached our maximum recursion depth | |
| if(size < Constants::INSERTION_THRESHOLD) | |
| return UnstableInsertionSort(first, last, comp); | |
| if(depth == 0) | |
| { | |
| if(Constants::HEAP_SORT_THREASHOLD < size) | |
| { | |
| std::make_heap(first, last, comp); | |
| std::sort_heap(first, last, comp); | |
| return; | |
| } | |
| else return UnstableInsertionSort(first, last, comp); | |
| } | |
| // Sort 5 elements distributed throughout array to find the median | |
| const DT s1 = (size * 1) >> 2; | |
| const DT s2 = (size * 2) >> 2; | |
| const DT s3 = (size * 3) >> 2; | |
| Sort5(first[0], first[s1], last[-1], first[s3], first[s2], comp); | |
| // Partition using the median of 5, ignoring items | |
| // already partitioned when finding median | |
| const Iter part_first = std::next(first, 1); | |
| const Iter part_last = std::prev(last, 1); | |
| const Iter split = std::partition( | |
| part_first, part_last, | |
| [&](const auto& a){ return comp(a, last[-1]); } | |
| ); | |
| // Decrease Depth | |
| depth -= 1; | |
| // Check to see if anything was partitioned before continuing | |
| if(0 < std::distance(part_first, split)) | |
| { | |
| // Put pivot into correct spot | |
| std::swap(last[-1], *split); | |
| // Recurse sort functions onto two new subarrays | |
| LowAssignmentSort(depth, first, split, comp); | |
| first = std::next(split, 1); | |
| } | |
| // If nothing was partitioned on the left side, | |
| // Filter out all elements equal to the partition | |
| else { | |
| first = std::partition( | |
| split, part_last, | |
| [&](const auto& a){ return !comp(first[0], a); } | |
| ); | |
| } | |
| } | |
| } | |
| } | |
| template<class Iter, class Compare> | |
| void LowAssignmentSort(Iter first, Iter last, Compare comp) | |
| { | |
| using DT = typename std::iterator_traits<Iter>::difference_type; | |
| using T = typename std::iterator_traits<Iter>::value_type; | |
| // Calculate recursion depth | |
| const DT size = std::distance(first, last); | |
| const int depth = wrapped::log_2(size); | |
| // Call the LowAssignmentSort | |
| wrapped::LowAssignmentSort(depth, first, last, comp); | |
| } | |
| } | |
| namespace sbos { | |
| // Sort2 - 1 Compare (STABLE) | |
| template<class T, class Compare> | |
| inline void Sort2(T& t0, T& t1, Compare comp) { | |
| // Sort the 2 numbers with a single swap | |
| if (comp(t1, t0)) { | |
| std::swap(t0, t1); | |
| } | |
| } | |
| // Sort3 - 2/3 Compares (STABLE) | |
| template<class T, class Compare> | |
| inline void Sort3(T& t0, T& t1, T& t2, Compare comp) { | |
| // Swap the first 2 numbers | |
| Sort2(t0, t1, comp); | |
| // Insert the 3rd number into {t0, t1} | |
| if(comp(t2, t1)) { | |
| std::swap(t1, t2); | |
| Sort2(t0, t1, comp); | |
| } | |
| } | |
| // Sort4 - 4/5 Compares (STABLE) | |
| template<class T, class Compare> | |
| inline void Sort4(T& t0, T& t1, T& t2, T& t3, Compare comp) { | |
| // Sort the first 3 numbers | |
| Sort3(t0, t1, t2); | |
| // Insert the 4rd number into {t0, t1, t2} | |
| if(comp(t3, t1)) { | |
| std::swap(t2, t3); | |
| std::swap(t1, t2); | |
| Sort2(t0, t1, comp); | |
| } else { | |
| Sort2(t2, t3, comp); | |
| } | |
| } | |
| // Sort5 - 7 Compares (NOT STABLE) | |
| template<class T, class Compare> | |
| inline void Sort5(T& t0, T& t1, T& t2, T& t3, T& t4, Compare comp) { | |
| // Sort the first 2 pairs of numbers | |
| Sort2(t0, t1, comp); | |
| Sort2(t2, t3, comp); | |
| // Sort the two pairs by their lower values | |
| // {t0 < t1} < {t2 < t3} | |
| if(comp(t2, t0)) { | |
| std::swap(t0, t2); | |
| std::swap(t1, t3); | |
| } | |
| // Insert the 5th number into {t0, t2, t3} | |
| if(comp(t4, t2)) { | |
| std::swap(t3, t4); | |
| std::swap(t2, t3); | |
| Sort2(t0, t2, comp); | |
| } else { | |
| Sort2(t3, t4, comp); | |
| } | |
| // Insert the 2nd number into {t2, t3, t4} | |
| if(comp(t3, t1)) { | |
| std::swap(t1, t2); | |
| std::swap(t2, t3); | |
| Sort2(t3, t4, comp); | |
| } else { | |
| Sort2(t1, t2, comp); | |
| } | |
| } | |
| } | |
| #endif |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment