Created
May 14, 2017 22:26
-
-
Save SammyVimes/b3af8bcf0ef6154568abd0a0513e46dc to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# import the necessary packages | |
import numpy as np | |
import imutils | |
import cv2 | |
class Stitcher: | |
def __init__(self): | |
# determine if we are using OpenCV v3.X | |
self.isv3 = imutils.is_cv3() | |
def stitch(self, images, ratio=0.75, reprojThresh=4.0, | |
showMatches=False): | |
# unpack the images, then detect keypoints and extract | |
# local invariant descriptors from them | |
(imageB, imageA) = images | |
(kpsA, featuresA) = self.detectAndDescribe(imageA) | |
(kpsB, featuresB) = self.detectAndDescribe(imageB) | |
# match features between the two images | |
M = self.matchKeypoints(kpsA, kpsB, | |
featuresA, featuresB, ratio, reprojThresh) | |
# if the match is None, then there aren't enough matched | |
# keypoints to create a panorama | |
if M is None: | |
return None | |
# otherwise, apply a perspective warp to stitch the images | |
# together | |
(matches, H, status) = M | |
a = np.array([[0, 0], [imageA.shape[1], 0], [0, imageA.shape[0]],[imageA.shape[1], imageA.shape[0]]], dtype='float32') | |
a = np.array([a]) | |
dst = cv2.perspectiveTransform(a, H) | |
print a | |
print dst | |
dff = max(abs(imageA.shape[1] - dst[0][1][0]), abs(imageA.shape[1] - dst[0][3][0])) | |
dff = dff - (imageB.shape[1] - imageA.shape[1]) | |
while imageA.shape[1] + imageB.shape[1] - int(dff) < imageB.shape[1]: | |
dff = dff / 2 | |
print dff | |
result = cv2.warpPerspective(imageA, H, | |
(imageA.shape[1] + imageB.shape[1] - int(dff), imageA.shape[0])) | |
result[0:imageB.shape[0], 0:imageB.shape[1]] = imageB | |
# check to see if the keypoint matches should be visualized | |
if showMatches: | |
vis = self.drawMatches(imageA, imageB, kpsA, kpsB, matches, | |
status) | |
# return a tuple of the stitched image and the | |
# visualization | |
return (result, vis) | |
# return the stitched image | |
return result | |
def detectAndDescribe(self, image): | |
# convert the image to grayscale | |
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
# check to see if we are using OpenCV 3.X | |
if self.isv3: | |
# detect and extract features from the image | |
descriptor = cv2.xfeatures2d.SIFT_create() | |
(kps, features) = descriptor.detectAndCompute(image, None) | |
# otherwise, we are using OpenCV 2.4.X | |
else: | |
# detect keypoints in the image | |
detector = cv2.FeatureDetector_create("SIFT") | |
kps = detector.detect(gray) | |
# extract features from the image | |
extractor = cv2.DescriptorExtractor_create("SIFT") | |
(kps, features) = extractor.compute(gray, kps) | |
# convert the keypoints from KeyPoint objects to NumPy | |
# arrays | |
kps = np.float32([kp.pt for kp in kps]) | |
# return a tuple of keypoints and features | |
return (kps, features) | |
def matchKeypoints(self, kpsA, kpsB, featuresA, featuresB, | |
ratio, reprojThresh): | |
# compute the raw matches and initialize the list of actual | |
# matches | |
matcher = cv2.DescriptorMatcher_create("BruteForce") | |
rawMatches = matcher.knnMatch(featuresA, featuresB, 2) | |
matches = [] | |
# loop over the raw matches | |
for m in rawMatches: | |
# ensure the distance is within a certain ratio of each | |
# other (i.e. Lowe's ratio test) | |
if len(m) == 2 and m[0].distance < m[1].distance * ratio: | |
matches.append((m[0].trainIdx, m[0].queryIdx)) | |
# computing a homography requires at least 4 matches | |
if len(matches) > 4: | |
# construct the two sets of points | |
ptsA = np.float32([kpsA[i] for (_, i) in matches]) | |
ptsB = np.float32([kpsB[i] for (i, _) in matches]) | |
# compute the homography between the two sets of points | |
(H, status) = cv2.findHomography(ptsA, ptsB, cv2.RANSAC, | |
reprojThresh) | |
# return the matches along with the homograpy matrix | |
# and status of each matched point | |
return (matches, H, status) | |
# otherwise, no homograpy could be computed | |
return None | |
def drawMatches(self, imageA, imageB, kpsA, kpsB, matches, status): | |
# initialize the output visualization image | |
(hA, wA) = imageA.shape[:2] | |
(hB, wB) = imageB.shape[:2] | |
vis = np.zeros((max(hA, hB), wA + wB, 3), dtype="uint8") | |
vis[0:hA, 0:wA] = imageA | |
vis[0:hB, wA:] = imageB | |
# loop over the matches | |
for ((trainIdx, queryIdx), s) in zip(matches, status): | |
# only process the match if the keypoint was successfully | |
# matched | |
if s == 1: | |
# draw the match | |
ptA = (int(kpsA[queryIdx][0]), int(kpsA[queryIdx][1])) | |
ptB = (int(kpsB[trainIdx][0]) + wA, int(kpsB[trainIdx][1])) | |
cv2.line(vis, ptA, ptB, (0, 255, 0), 1) | |
# return the visualization | |
return vis |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# USAGE | |
# python stitch.py --first images/bryce_left_01.png --second images/bryce_right_01.png | |
# import the necessary packages | |
from pyimagesearch.panorama import Stitcher | |
import argparse | |
import imutils | |
import cv2 | |
# construct the argument parse and parse the arguments | |
ap = argparse.ArgumentParser() | |
ap.add_argument("-l", "--list", nargs='+', required=True, | |
help="path to the first image") | |
args = vars(ap.parse_args()) | |
# load the two images and resize them to have a width of 400 pixels | |
# (for faster processing) | |
img_urls = args["list"] | |
images = [cv2.imread(img_url) for img_url in args["list"]] | |
for idx,img in enumerate(images): | |
images[idx] = imutils.resize(img, width=400) | |
# stitch the images together to create a panorama | |
cur_img = images[0] | |
imgs_to_process = images[1:] | |
imgs_len = len(imgs_to_process) | |
for i in range(imgs_len): | |
print "stitching" | |
stitcher = Stitcher() | |
(result, vis) = stitcher.stitch((cur_img, imgs_to_process[i]), showMatches=True) | |
cur_img = imutils.resize(result, width=400) | |
result = cur_img | |
# show the images | |
cv2.imshow("Keypoint Matches", vis) | |
cv2.imshow("Result", result) | |
cv2.waitKey(0) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
hello, sorry if my questions is silly. im new at python. please how can i run this program?