Last active
October 31, 2020 23:57
-
-
Save SamratSahoo/ebd53a32c43c9cac808f91e941ae7129 to your computer and use it in GitHub Desktop.
Init for the autoencoder class
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class Autoencoder(nn.Module): | |
def __init__(self, epochs=100, batchSize=128, learningRate=1e-3): | |
super(Autoencoder, self).__init__() | |
# Encoder Network | |
self.encoder = nn.Sequential(nn.Linear(784, 128), | |
nn.ReLU(True), | |
nn.Linear(128, 64), | |
nn.ReLU(True), | |
nn.Linear(64, 12), | |
nn.ReLU(True), | |
nn.Linear(12, 3)) | |
# Decoder Network | |
self.decoder = nn.Sequential(nn.Linear(3, 12), | |
nn.ReLU(True), | |
nn.Linear(12, 64), | |
nn.ReLU(True), | |
nn.Linear(64, 128), | |
nn.ReLU(True), | |
nn.Linear(128, 784), | |
nn.Tanh()) | |
self.epochs = epochs | |
self.batchSize = batchSize | |
self.learningRate = learningRate | |
# Data + Data Loaders | |
self.imageTransforms = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Normalize([0.5], [0.5]) | |
]) | |
self.data = MNIST('./Data', transform=self.imageTransforms) | |
self.dataLoader = torch.utils.data.DataLoader(dataset=self.data, | |
batch_size=self.batchSize, | |
shuffle=True) | |
self.optimizer = torch.optim.Adam(self.parameters(), lr=self.learningRate, weight_decay=1e-5) | |
self.criterion = nn.MSELoss() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment