Last active
August 29, 2015 14:20
-
-
Save SamyBencherif/96faf148a678808aa79b to your computer and use it in GitHub Desktop.
Cube.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Created by Samy Bencherif | |
# Runs in Pythonista for iOS | |
from scene import * | |
from math import * | |
from random import random | |
def transform(point, transformationVector): | |
k = [0]*max(len(point), len(transformationVector)) | |
for i in range(max(len(point), len(transformationVector))): | |
try: | |
k[i] += point[i] | |
except: | |
pass | |
try: | |
k[i] += transformationVector[i] | |
except: | |
pass | |
return tuple(k) | |
def rotate(point3D, axis, angle): | |
if axis == 'x': | |
r = sqrt(point3D[1]**2+point3D[2]**2) | |
theta = atan2(point3D[1], point3D[2]) | |
return (point3D[0], r*cos(radians(angle)+theta), r*sin(radians(angle)+theta)) | |
elif axis == 'y': | |
r = sqrt(point3D[0]**2+point3D[2]**2) | |
theta = atan2(point3D[2],point3D[0]) | |
return (r*cos(radians(angle)+theta), point3D[1], r*sin(radians(angle)+theta)) | |
else: | |
r = sqrt(point3D[0]**2+point3D[1]**2) | |
theta = atan2(point3D[1], point3D[0]) | |
return (r*cos(radians(angle)+theta), r*sin(radians(angle)+theta), point3D[2]) | |
def midpoint(face): #just for 4,2 sides | |
if len(face)==4: | |
return midpoint((midpoint((face[0],face[1])),midpoint((face[2],face[3])))) | |
else: | |
return (face[1][2]+(face[0][2]-face[1][2])/2, face[1][1]+(face[0][1]-face[1][1])/2, face[1][0]+(face[0][0]-face[1][0])/2) | |
def distance(point1, point2): | |
return ((point1[2]-point2[2])**2+(point1[1]-point2[1])**2+(point1[0]-point2[0])**2)**.5 | |
def triangle(a, b, c): | |
d = (((b[0]+c[0])/2-a[0])**2+((b[1]+c[1])/2-a[1])**2)**.5 | |
s = (cos(atan2((b[1]+c[1])/2-a[1],(b[0]+c[0])/2-a[0])), sin(atan2((b[1]+c[1])/2-a[1],(b[0]+c[0])/2-a[0]))) | |
su = (cos(atan2(b[1]-c[1],b[0]-c[0])), sin(atan2(b[1]-c[1],b[0]-c[0]))) | |
for i in range(int(d+1)): | |
l = ((b[0]-c[0])**2+(b[1]-c[1])**2)**.5 | |
line(a[0]+(i)*s[0]+((i*l)/(2*d))*su[0],a[1]+(i)*s[1]+((i*l)/(2*d))*su[1],a[0]+(i)*s[0]-((i*l)/(2*d))*su[0],a[1]+(i)*s[1]-((i*l)/(2*d))*su[1]) | |
#Thanks to Grayson York for suggesting this function | |
def dualsort(list1, list2): #sort list1 apply to list2, return list2 | |
#list1 = list(list1) | |
#list2 = list(list2) | |
assert len(list1)==len(list2) | |
for i in range(len(list1)): | |
for j in range(i): | |
if list1[j]>list1[i]: | |
a = list1[i] | |
b = list2[i] | |
del list1[i] | |
del list2[i] | |
list1 = list1[:j]+[a]+list1[j:] | |
list2 = list2[:j]+[b]+list2[j:] | |
break | |
return list2 | |
class MyScene (Scene): | |
def setup(self): | |
self.cube = [ [(-1, 1, -1), (1, 1, -1), (1, -1, -1), (-1, -1, -1)], #front face | |
[(1, 1, -1), (1, 1, 1), (1, -1, 1), (1, -1, -1)], #right face | |
[(-1, 1, -1), (1, 1, -1), (1, 1, 1), (-1, 1, 1)], #top face | |
[(-1, -1, -1), (1, -1, -1), (1, -1, 1), (-1, -1, 1)], #bottom face | |
[(-1, 1, -1), (-1, 1, 1), (-1, -1, 1), (-1, -1, -1)], #left face | |
[(-1, 1, 1), (1, 1, 1), (1, -1, 1), (-1, -1, 1)], #back face | |
] | |
self.plane = -5 | |
self.focus = (0, 0, -7) | |
self.rotation = (0,0,0) | |
self.lamp = (6,6,-2) | |
def draw(self): | |
background(1, 1, 1) | |
stroke(0,0,0) | |
stroke_weight(1) | |
self.rotation = transform(self.rotation, (1,1,1)) | |
self.rotation = (self.rotation[0]%360, self.rotation[1]%360, self.rotation[2]%360) | |
cubeR = [] | |
for face in self.cube: | |
faceR = [] | |
for point in face: | |
faceR.append(rotate(rotate(rotate(point, 'x', self.rotation[0]), 'y', self.rotation[1]), 'z', self.rotation[2])) | |
cubeR.append(faceR) | |
#self.cube = cubeR | |
shade = (0,0,0) | |
cubeRS = dualsort(map(lambda x: distance(midpoint(x), self.focus), cubeR), cubeR)[::-1] | |
for face in cubeRS: #New: cubeRS is the rotated cube sorted for render sequence | |
face2D = [] | |
for point in face: | |
pc = (self.plane-self.focus[2])/float(point[2]-self.focus[2]) | |
nv = (self.focus[0]+(point[0]-self.focus[0])*pc, self.focus[1]+(point[1]-self.focus[1])*pc) | |
um = 150 #adjust | |
nv = (nv[0]*um, nv[1]*um) | |
face2D.append(transform(nv, (self.bounds.w/2, self.bounds.h/2))) #adjust these values | |
#print(distance(midpoint(face), self.lamp)) | |
shade = (5/distance(midpoint(face), self.lamp),)*3 #the 5 here is the lamp's brightness | |
for i in range(0, len(face2D), 2): | |
#line(face2D[i][0], face2D[i][1], face2D[(i+1)%len(face2D)][0], face2D[(i+1)%len(face2D)][1]) | |
stroke(shade[0], shade[1], shade[2],1) | |
triangle(face2D[i],face2D[i+1],face2D[(i+2)%len(face2D)]) | |
def touch_began(self, touch): | |
pass | |
def touch_moved(self, touch): | |
pass | |
def touch_ended(self, touch): | |
pass | |
run(MyScene()) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment