Skip to content

Instantly share code, notes, and snippets.

# Step 1: Convert all interactions to a list
journeys = campaign_data.groupby('customer_id')['channel'].aggregate(
lambda x: x.tolist()).reset_index()
# Step 2: Add last interaction as 1 or 0 event representing activation
activation_results = campaign_data.drop_duplicates('customer_id', keep='last')[['customer_id', 'activation']]
journeys = pd.merge(journeys, activation_results, how='left', on='customer_id')
# Step 3: Add start and end states based on whether customer activated
journeys['path'] = np.where(
import numpy as np
import pandas as pd
campaign_data = pd.read_csv("cashback_activation_data.csv")
campaign_data = campaign_data.sort_values(['customer_id', 'timestamp'],
ascending=[False, True])
campaign_data['visit_order'] = campaign_data.groupby('customer_id').cumcount() + 1
@robshox
robshox / gist:6f7ad341d1878d8a988b2d6a0eb69bf4
Created August 10, 2023 11:46
Function Code and JSON prompt for tutorial from Rob Shocks on AWS LLAMA 2
## LAMNDA FUNCTION lambda_function.py
import boto3
import json
# grab environment variables
ENDPOINT_NAME = "jumpstart-dft-meta-textgeneration-llama-2-7b-rs"
runtime= boto3.client('runtime.sagemaker')
def lambda_handler(event, context):
Variable Definition
User_ID User ID
Product_ID Product ID
Gender Sex of User
Age Age in bins
Occupation Occupation (Masked)
City_Category Category of the City (A,B,C)
Stay_In_Current_City_Years Number of years stay in current city
Marital_Status Marital Status
Product_Category_1 Product Category (Masked)
import numpy as np
import scipy.optimize
from sklearn.linear_model import Ridge
from sklearn.isotonic import IsotonicRegression
from sklearn.base import BaseEstimator, RegressorMixin
class MonotonicRegression(BaseEstimator, RegressorMixin):
""" Smooth increasing piecewise linear regression.
During training, it minimizes MSE and the sum of absolute changes in its slope.
@jdmoore7
jdmoore7 / rasch_irt.py
Last active November 26, 2023 17:42
Bayesian Rasch IRT implementation with PyMC3
import pymc3 as pm
from theano import tensor as tt
import arviz as az
import numpy as np
# Binary, correct answer array
scores = np.array([1,1,1,0,0,0
]).flatten()
# (student:question) tuples
@avidale
avidale / conceptnet5_russified.ipynb
Created February 10, 2022 11:43
conceptnet5_russified.ipynb
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
@avidale
avidale / pseudo-ppl.ipynb
Last active May 25, 2023 21:17
pseudo-ppl.ipynb
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
@avidale
avidale / finetune_rut5-base-multitask.ipynb
Last active December 11, 2023 04:22
finetune_rut5-base-multitask.ipynb
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
@JulianaFontolan
JulianaFontolan / estimator.py
Last active July 26, 2023 20:18
CallEstimator
# Call the estimator with the main parameters
from sagemaker.estimator import Estimator
estimator = Estimator(
image_uri=ecr_image,
role=role,
instance_count=1,
instance_type="ml.c4.xlarge",
output_path=out_path