Skip to content

Instantly share code, notes, and snippets.

@SaschaHeyer
Created January 21, 2025 10:37
Show Gist options
  • Save SaschaHeyer/f17e43d8ffd4841ae57d7632133a6457 to your computer and use it in GitHub Desktop.
Save SaschaHeyer/f17e43d8ffd4841ae57d7632133a6457 to your computer and use it in GitHub Desktop.
Agent + RAG APIs
import vertexai
from vertexai.preview import reasoning_engines
from vertexai.preview import rag
from vertexai.preview.generative_models import Tool
from langchain.agents.format_scratchpad.tools import format_to_tool_messages
from langchain.memory import ChatMessageHistory
from langchain_core import prompts
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
PROJECT_ID = "sascha-playground-doit"
LOCATION = "us-central1"
STAGING_BUCKET = "gs://doit-llm"
vertexai.init(project=PROJECT_ID,
location=LOCATION,
staging_bucket=STAGING_BUCKET)
model = "gemini-2.0-flash-exp"
#model = "gemini-1.5-flash-002"
def get_session_history(session_id: str):
from langchain_google_firestore import FirestoreChatMessageHistory
from google.cloud import firestore
client = firestore.Client(project="sascha-playground-doit")
return FirestoreChatMessageHistory(
client=client,
session_id=session_id,
collection="history",
encode_message=False,
)
book_retrieval_tool = Tool.from_retrieval(
retrieval=rag.Retrieval(
source=rag.VertexRagStore(
rag_resources=[rag.RagResource(
rag_corpus="projects/234439745674/locations/us-central1/ragCorpora/3918694625765752832")],
similarity_top_k=5,
vector_distance_threshold=0.5,
),
)
)
prompt = {
"history": lambda x: x["history"],
"input": lambda x: x["input"],
"agent_scratchpad": (lambda x: format_to_tool_messages(x["intermediate_steps"])),
} | prompts.ChatPromptTemplate.from_messages(
[
(
"system",
"""you are a digital librarian if a users says Hi you say: welcome to doits book store I am there to help you answer any questions about our books and help you find the right one for you
follow instructions precisely:
- you are always friendly and you answer with engaging converstions
- use the chat history for the conversation
example
""",
),
prompts.MessagesPlaceholder(variable_name="history"),
("user", "{input}"),
prompts.MessagesPlaceholder(variable_name="agent_scratchpad"),
]
)
qa_system_prompt = """you are a digital librarian if a users says Hi you say: welcome to doits book store I am there to help you answer any questions about our books and help you find the right one for you \
follow instructions precisely: \
- you are always friendly and you answer with engaging converstions \
- use the chat history for the conversation \
{input}"""
qa_prompt = ChatPromptTemplate.from_messages(
[
("system", qa_system_prompt),
MessagesPlaceholder("history"),
("user", "{input}"),
]
)
qa_prompt = ChatPromptTemplate.from_messages(
[
("system", qa_system_prompt),
MessagesPlaceholder("history"),
("user", "Context: {history}. Query: {input}"),
]
)
print(qa_prompt)
agent = reasoning_engines.LangchainAgent(
prompt=qa_prompt,
model_kwargs={"temperature": 0},
model=model,
chat_history=get_session_history,
tools=[
book_retrieval_tool,
],
#enable_tracing=True,
)
remote_agent = reasoning_engines.ReasoningEngine.create(
agent,
requirements=[
"google-cloud-aiplatform[langchain,reasoningengine]",
"langchain-google-firestore"
],
)
response = remote_agent.query(
input="Hi",
config={"configurable": {"session_id": "1"}})
print(response["output"])
#print(response)
response = remote_agent.query(
input="I am looking for a book but cant remember the name. It was about a woman writing a diary in a room",
config={"configurable": {"session_id": "1"}})
print(response["output"])
response = remote_agent.query(
input="please tell me more about the character in that book",
config={"configurable": {"session_id": "1"}})
print(response["output"])
print("full response:")
print(response)
const axios = require('axios');
const { GoogleAuth } = require('google-auth-library');
const PROJECT_ID = "sascha-playground-doit";
const LOCATION = "us-central1";
const REASONING_ENGINE_ID = "6135925793873723392";
const auth = new GoogleAuth({
scopes: ['https://www.googleapis.com/auth/cloud-platform'],
});
async function queryReasoningEngine(question, sessionId) {
try {
const client = await auth.getClient();
const { token } = await client.getAccessToken(); // Ensure correct token extraction
console.log('Access Token:', token); // Log to confirm it's valid
const endpoint = `https://${LOCATION}-aiplatform.googleapis.com/v1beta1/projects/${PROJECT_ID}/locations/${LOCATION}/reasoningEngines/${REASONING_ENGINE_ID}:query`;
const payload = {
input: {
input: question,
config: {
configurable: {
session_id: sessionId,
},
},
},
};
const response = await axios.post(endpoint, payload, {
headers: {
Authorization: `Bearer ${token}`, // Pass the token correctly
'Content-Type': 'application/json',
},
});
return response.data; // Assuming output is part of the response
} catch (error) {
console.error('Error querying reasoning engine:', error.response?.data || error.message);
throw new Error('Failed to query reasoning engine');
}
}
module.exports = { queryReasoningEngine };
// Example Usage
//queryReasoningEngine('can you recommend a gothic book?', 'test-session')
// .then((output) => console.log('Reasoning Engine Output:', output))
// .catch((err) => console.error(err));
import vertexai
from vertexai.preview import rag
vertexai.init(project="sascha-playground-doit", location="us-central1")
#optional
embedding_model_config = rag.EmbeddingModelConfig(
publisher_model="publishers/google/models/text-embedding-004")
# create a corpus
corpus_name = "books"
corpus = rag.create_corpus(display_name="books",
embedding_model_config=embedding_model_config)
print(corpus)
corpus_name = corpus.name
print(corpus_name)
import_files = rag.import_files(corpus_name=corpus_name,
paths=["gs://doit-llm/books"],
chunk_size=1500)
print(import_files)
# get the corpus
corpus = rag.get_corpus(name=corpus_name)
# this ID will be used later for the agent!!!!!
print(corpus)
# retrieve documents
response = rag.retrieval_query(
rag_resources=[
rag.RagResource(
rag_corpus=corpus_name,
)
],
text="I am looking for detective novel book anything you can recommend?",
similarity_top_k=10, # Optional
vector_distance_threshold=0.5, # lower distance means the document as a high similarity to our query
)
print(response)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment