Created
December 20, 2017 01:14
-
-
Save Scinawa/2e262c3c0ca51fd68816f951eeb90175 to your computer and use it in GitHub Desktop.
Space estimation for HHL
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/python3 | |
import matplotlib.pyplot as plt | |
import sys | |
import argparse | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--nqubit", required=False, help="number of qubits", type=int) | |
parser.add_argument("--precision", required=False, default=32, type=int) | |
parser.add_argument("--graph", help="plot a graph!", action='store_true', default=False) | |
qubits = list(range(34,200)) | |
precisions = [32,64] | |
sparsity = [1,100] | |
def space_resource_estimation (qubit, precision ): | |
""" | |
- 1 ancilla qubit :) | |
- k qubit of precision for phase estimation | |
- rest for storing the state $b$ and get $x$. | |
classically, we have to save a vector of equal length | |
using 64bits of precision (we don't have anymore 32bits CPUs) | |
""" | |
# ancilla | |
usable = qubit - 1 | |
# phase estimation space | |
storage_qubits = usable - precision | |
# qubits for I/O | |
vector_dimension = 2**storage_qubits | |
# how many bytes for a vector of this dimension with this precision? / convert in tera | |
terabytes = (vector_dimension * precision / (1.25*(10**13))) | |
#print("qubit {} precision {} terabytes {:f}".format(qubit, precision, terabytes)) | |
return terabytes | |
def generate_plot(): | |
""" | |
We generate the plot | |
""" | |
fig = plt.figure() | |
ax = fig.add_subplot(111) | |
plt.title("Qubit vs Space") | |
for s in sparsity: | |
for precision in precisions: | |
space = list(map(lambda x : space_resource_estimation(x, precision)*s, qubits)) | |
ax.plot(qubits, space, label='Precision: {0} - Sparsity = {1}'.format(precision, s)) | |
plt.axhline(y=400000, color='grey', linewidth=1, linestyle='-') | |
plt.ylabel('Classical storage (TB)') | |
plt.xlabel('Qubits') | |
plt.yscale("log") | |
plt.legend(loc='upper left') | |
plt.legend(shadow=True, fancybox=True) | |
plt.savefig('space_resource_estimation.png') | |
if __name__ == '__main__': | |
args = parser.parse_args() | |
if args.nqubit: | |
for precision in precisions: | |
tb = space_resource_estimation(args.nqubit, precision) | |
print("With {0} qubits and {1} bits of precision we need {2:f} TB of space ".format(args.nqubit, precision, tb, | |
sparsity)) | |
sys.exit() | |
if args.graph: | |
generate_plot() | |
sys.exit() | |
parser.parse_args(['-h']) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment