Created
May 6, 2016 23:02
-
-
Save Seanny123/95770adce9a60bf02514a64877e338d3 to your computer and use it in GitHub Desktop.
Terry's alternate reservoir computing implementation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class AltEcho(Network, Reservoir): | |
n_neurons = IntParam('n_neurons', default=None, low=1) | |
dimensions = IntParam('dimensions', default=None, low=1) | |
dt = NumberParam('dt', low=0, low_open=True) | |
recurrent_synapse = SynapseParam('recurrent_synapse') | |
gain = NumberParam('gain', low=0, low_open=True) | |
neuron_type = NeuronTypeParam('neuron_type') | |
def __init__(self, n_neurons, dimensions, recurrent_synapse=0.005, | |
readout_synapse=None, radii=1.0, gain=1.25, rng=None, | |
neuron_type=Tanh(), ens_seed=None, | |
label=None, seed=None, add_to_container=None, **ens_kwargs): | |
Network.__init__(self, label, seed, add_to_container) | |
self.n_neurons = n_neurons | |
self.dimensions = dimensions | |
self.recurrent_synapse = recurrent_synapse | |
self.radii = radii # TODO: make array or scalar parameter? | |
self.gain = gain | |
self.rng = np.random if rng is None else rng | |
self.neuron_type = neuron_type | |
self.W_in = ( | |
self.rng.rand(self.n_neurons, self.dimensions) - 0.5) / self.radii | |
self.W_bias = self.rng.rand(self.n_neurons, 1) - 0.5 | |
# got the following two lines from Terry | |
self.W = rng.uniform(-0.5, 0.5, size=(n_neurons, n_neurons)) | |
self.W *= 1.0 / np.max(np.abs(np.linalg.eigvals(self.W)**2)) | |
with self: | |
self.ensemble = nengo.Ensemble( | |
self.n_neurons, 1, neuron_type=self.neuron_type, seed=ens_seed, | |
**ens_kwargs) | |
self.input = nengo.Node(size_in=self.dimensions) | |
pool = self.ensemble.neurons | |
nengo.Connection( | |
self.input, pool, transform=self.W_in, synapse=None) | |
nengo.Connection( # note the bias will be active during training | |
nengo.Node(output=1, label="bias"), pool, | |
transform=self.W_bias, synapse=None) | |
nengo.Connection( | |
self.ensemble.neurons, pool, transform=self.W, | |
synapse=self.recurrent_synapse) | |
Reservoir.__init__( | |
self, self.input, pool, readout_synapse=readout_synapse, | |
network=self) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment