Created
May 7, 2016 07:10
-
-
Save Sentient07/78352c197d22533ccf37b79a2d6a2837 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
name: "CIFAR10_full_deploy" | |
# N.B. input image must be in CIFAR-10 format | |
# as described at http://www.cs.toronto.edu/~kriz/cifar.html | |
layer { | |
name: "data" | |
type: "Input" | |
top: "data" | |
input_param { shape: { dim: 1 dim: 3 dim: 32 dim: 32 } } | |
} | |
layer { | |
name: "conv1" | |
type: "Convolution" | |
bottom: "data" | |
top: "conv1" | |
param { | |
lr_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
} | |
convolution_param { | |
num_output: 32 | |
pad: 2 | |
kernel_size: 5 | |
stride: 1 | |
} | |
} | |
layer { | |
name: "pool1" | |
type: "Pooling" | |
bottom: "conv1" | |
top: "pool1" | |
pooling_param { | |
pool: MAX | |
kernel_size: 3 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "relu1" | |
type: "ReLU" | |
bottom: "pool1" | |
top: "pool1" | |
} | |
layer { | |
name: "norm1" | |
type: "LRN" | |
bottom: "pool1" | |
top: "norm1" | |
lrn_param { | |
local_size: 3 | |
alpha: 5e-05 | |
beta: 0.75 | |
norm_region: WITHIN_CHANNEL | |
} | |
} | |
layer { | |
name: "conv2" | |
type: "Convolution" | |
bottom: "norm1" | |
top: "conv2" | |
param { | |
lr_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
} | |
convolution_param { | |
num_output: 32 | |
pad: 2 | |
kernel_size: 5 | |
stride: 1 | |
} | |
} | |
layer { | |
name: "relu2" | |
type: "ReLU" | |
bottom: "conv2" | |
top: "conv2" | |
} | |
layer { | |
name: "pool2" | |
type: "Pooling" | |
bottom: "conv2" | |
top: "pool2" | |
pooling_param { | |
pool: AVE | |
kernel_size: 3 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "norm2" | |
type: "LRN" | |
bottom: "pool2" | |
top: "norm2" | |
lrn_param { | |
local_size: 3 | |
alpha: 5e-05 | |
beta: 0.75 | |
norm_region: WITHIN_CHANNEL | |
} | |
} | |
layer { | |
name: "conv3" | |
type: "Convolution" | |
bottom: "norm2" | |
top: "conv3" | |
convolution_param { | |
num_output: 64 | |
pad: 2 | |
kernel_size: 5 | |
stride: 1 | |
} | |
} | |
layer { | |
name: "relu3" | |
type: "ReLU" | |
bottom: "conv3" | |
top: "conv3" | |
} | |
layer { | |
name: "pool3" | |
type: "Pooling" | |
bottom: "conv3" | |
top: "pool3" | |
pooling_param { | |
pool: AVE | |
kernel_size: 3 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "ip1" | |
type: "InnerProduct" | |
bottom: "pool3" | |
top: "ip1" | |
param { | |
lr_mult: 1 | |
decay_mult: 250 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
inner_product_param { | |
num_output: 2 | |
} | |
} | |
layer { | |
name: "prob" | |
type: "Softmax" | |
bottom: "ip1" | |
top: "prob" | |
} |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
net: "train_val.prototxt" | |
test_iter: 1000 | |
test_interval: 1000 | |
base_lr: 0.01 | |
lr_policy: "step" | |
gamma: 0.1 | |
stepsize: 100000 | |
display: 20 | |
max_iter: 450000 | |
momentum: 0.9 | |
weight_decay: 0.0005 | |
snapshot: 10000 | |
snapshot_prefix: "caffenet_train/" | |
solver_mode: CPU |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
name: "CIFAR10_full" | |
layer { | |
name: "cifar" | |
type: "Data" | |
top: "data" | |
top: "label" | |
include { | |
phase: TRAIN | |
} | |
transform_param { | |
mean_file: "mean.binaryproto" | |
} | |
data_param { | |
source: "cifar10_train_lmdb" | |
batch_size: 111 | |
backend: LMDB | |
} | |
} | |
layer { | |
name: "cifar" | |
type: "Data" | |
top: "data" | |
top: "label" | |
include { | |
phase: TEST | |
} | |
transform_param { | |
mean_file: "mean.binaryproto" | |
} | |
data_param { | |
source: "cifar10_test_lmdb" | |
batch_size: 1000 | |
backend: LMDB | |
} | |
} | |
layer { | |
name: "conv1" | |
type: "Convolution" | |
bottom: "data" | |
top: "conv1" | |
param { | |
lr_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
} | |
convolution_param { | |
num_output: 32 | |
pad: 2 | |
kernel_size: 5 | |
stride: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.0001 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "pool1" | |
type: "Pooling" | |
bottom: "conv1" | |
top: "pool1" | |
pooling_param { | |
pool: MAX | |
kernel_size: 3 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "Sigmoid1" | |
type: "Sigmoid" | |
bottom: "pool1" | |
top: "Sigmoid1" | |
} | |
layer { | |
name: "conv2" | |
type: "Convolution" | |
bottom: "Sigmoid1" | |
top: "conv2" | |
param { | |
lr_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
} | |
convolution_param { | |
num_output: 32 | |
pad: 2 | |
kernel_size: 5 | |
stride: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Sigmoid2" | |
type: "Sigmoid" | |
bottom: "conv2" | |
top: "Sigmoid2" | |
} | |
layer { | |
name: "pool2" | |
type: "Pooling" | |
bottom: "Sigmoid2" | |
top: "pool2" | |
pooling_param { | |
pool: AVE | |
kernel_size: 3 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "conv3" | |
type: "Convolution" | |
bottom: "pool2" | |
top: "conv3" | |
convolution_param { | |
num_output: 64 | |
pad: 2 | |
kernel_size: 5 | |
stride: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
param { | |
lr_mult: 1 | |
} | |
param { | |
lr_mult: 1 | |
} | |
} | |
layer { | |
name: "Sigmoid3" | |
type: "Sigmoid" | |
bottom: "conv3" | |
top: "Sigmoid3" | |
} | |
layer { | |
name: "pool3" | |
type: "Pooling" | |
bottom: "Sigmoid3" | |
top: "pool3" | |
pooling_param { | |
pool: AVE | |
kernel_size: 3 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "ip1" | |
type: "InnerProduct" | |
bottom: "pool3" | |
top: "ip1" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
inner_product_param { | |
num_output: 2 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "accuracy" | |
type: "Accuracy" | |
bottom: "ip1" | |
bottom: "label" | |
top: "accuracy" | |
include { | |
phase: TEST | |
} | |
} | |
layer { | |
name: "loss" | |
type: "SoftmaxWithLoss" | |
bottom: "ip1" | |
bottom: "label" | |
top: "loss" | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment